
Physica D 231 (2007) 55–86
www.elsevier.com/locate/physd
Singular ring solutions of critical and supercritical nonlinear
Schrödinger equations

Gadi Fibicha,∗, Nir Gavisha, Xiao-Ping Wangb

a School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel
b Department of Mathematics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

Received 17 September 2006; received in revised form 18 April 2007; accepted 30 April 2007
Available online 6 May 2007

Communicated by J. Lega

Abstract

We present new singular solutions of the nonlinear Schrödinger equation (NLS)

iψt (t, r)+ ψrr +
d − 1

r
ψr + |ψ |

2σψ = 0, 1 < d,
2
d

≤ σ ≤ 2.

These solutions collapse with a quasi self-similar ring profile ψQ , i.e. ψ ∼ ψQ , where

ψQ =
1

L1/σ (t)
Q
(

r − rm(t)
L

)
exp

[
i
∫ t

0

ds
L2(s)

+ i
L t

4L

[
αr2

+ (1 − α)(r − rm(t))2
]]
,

L(t) is the ring width that vanishes at the singularity, rm(t) = r0Lα(t) is the ring radius and α =
2−σ
σ(d−1) . The blowup rate of these solutions

is 1
1+α

for 2
d ≤ σ < 2 and 1 < d (0 < α ≤ 1), and a square root with a loglog correction (the loglog law) when σ = 2 and 1 < d (α = 0).

Therefore, the NLS has solutions that collapse with any blowup rate p for 1/2 ≤ p < 1. This study extends the results of [G. Fibich, N. Gavish,
X. Wang, New singular solutions of the nonlinear Schrödinger equation, Physica D 211 (2005) 193–220] for σ = 1 and d = 2, and of [P. Raphael,
Existence and stability of a solution blowing up on a sphere for a L2 super critical non linear Schrödinger equation, Duke Math. J. 134 (2) (2006)
199–258] for σ = 2 and d = 2, to all 2/d ≤ σ ≤ 2 and 1 < d.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Brief review of NLS theory

The focusing nonlinear Schrödinger equation (NLS)

iψt (t, x)+ ∆ψ + |ψ |
2σψ = 0, ψ(0, x) = ψ0(x), (1)

where x = (x1, x2, . . . , xd) and ∆ = ∂x1x1 + · · · + ∂xd xd , is
one of the canonical nonlinear equations in physics, arising
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in various fields such as nonlinear optics, plasma physics,
Bose–Einstein condensates (BEC), and surface waves. We now
briefly review NLS theory, for more information, see [1–3].
The NLS (1) has two important conservation laws: power (L2

norm) conservation

P(t) =

∫
|ψ |

2dx ≡ P(0), (2)

and Hamiltonian conservation

H(t) =

∫
|∇ψ |

2dx −
1

σ + 1

∫
|ψ |

2σ+2dx ≡ H(0). (3)

The NLS is called subcritical if σd < 2. In this case,
all solutions exist globally. In contrast, solutions of the
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critical (σd = 2) and supercritical (σd > 2) NLS can become
singular in finite time Tc, i.e.

lim
t→Tc

‖ψ‖H1 = ∞, 0 < Tc < ∞,

where

‖ψ‖H1 =

√∫
|ψ |2dx +

∫
|∇ψ |2dx.

1.1.1. Critical NLS (σd = 2)
We now review the theory of singular solutions of the critical

NLS. Since σ = 2/d , the critical NLS can be written as

iψt (t, x)+ ∆ψ + |ψ |
4/dψ = 0, ψ(0, x) = ψ0(x). (4)

The critical NLS (4) has waveguide solutions of the form
ψ = eit R(r), where r = |x | and R is the solution of

R′′(r)+
d − 1

r
R′

− R + R4/d+1
= 0

R′(0) = 0, R(∞) = 0. (5)

When d ≥ 2, Eq. (5) has an enumerable number of solutions
{R(n)}∞n=0, which can be arranged in order of increasing
power [4], i.e.∫
(R(0))2dx ≤

∫
(R(1))2dx ≤

∫
(R(2))2dx ≤ · · · .

Of most importance is the ground state solution R := R(0), also
known in the case d = 2 as the Townes profile [5]. The ground
state R attains its maximum at r = 0, and is monotonically
decreasing for 0 ≤ r < ∞.

As noted, solutions of the critical NLS (4) can self-focus
and become singular at a finite time Tc. A necessary condition
for singularity formation is that the initial power P(0) exceeds
the critical power Pcr, i.e. P(0) ≥ Pcr, where Pcr is equal
to power of the ground state R, i.e. Pcr =

∫
R2dx [6]. A

sufficient condition for collapse is that the Hamiltonian is
negative, i.e. H(0) < 0.

The critical NLS (4) is invariant under the following
lens (pseudo-conformal) transformation [7]. Let ψ(t, x) be a
solution of the NLS (4), and let

ψ̃(t, x) =
1

L1/σ (t)
ψ
(
τ,

x
L

)
exp

(
i

L t

4L
|x |

2
)
,

τ =

∫ t

0

ds
L2(s)

, (6)

where L(t) = fc(Tc −t), fc is a positive constant and σ = 2/d.
Then, ψ̃(t, x) is also a solution of the NLS (4). Applying
the lens transformation (6) to the waveguide solutions ψ =

eit R(n)(r), where R(n) are the solutions of (5), gives rise to the
explicit blowup solutions

ψ (n)ex (t, r) =
1

L1/σ (t)
R(n)

( r
L

)
eiτ+i Lt

4L r2
,

τ =

∫ t

0

ds
L2(s)

, L(t) = fc(Tc − t), (7)
that become singular at t = Tc. These explicit blowup solutions,
however, are unstable.

Numerical studies conducted during the 1980s (see e.g., [8,
9]) suggested that stable singular solutions of the critical
NLS (4) collapse with the universal, radially-symmetrical
asymptotic profile ψR . Thus, regardless of the initial condition,
near the singularity ψ ∼ ψR , where

ψR(t, r) =
1

L1/σ (t)
R
( r

L

)
eiτ+i Lt

4L r2
, τ =

∫ t

0

ds
L2(s)

, (8)

R is the ground-state solution of (5) and limt→Tc L(t) =

0. More precisely, it turned out that only the inner core of
the solution collapses into the singularity with the asymptotic
profile ψR , while the rest of the solution remains in L2, i.e.

ψ ∼

{
ψR 0 ≤ r ≤ κL(t)
ψouter κL(t) < r, (9)

where κ � 1.
The understanding that NLS collapse is quasi self-similar

with the universal self-similar profile ψR was crucial for the
derivation of the blowup rate of the critical NLS, which turned
out to be a square root with a loglog correction (the loglog
law) [10–13], i.e.

L(t) ∼

(
2π(Tc − t)

log log 1/(Tc − t)

) 1
2
, t → Tc. (10)

The convergence to ψR was also at the heart of the derivation
of the asymptotic theory for the effects of small perturbations
in the critical NLS, known as modulation theory [1]. A
rigorous proof of the convergence to the self-similar profile ψR ,
however, turned out to be a hard problem. Partial results were
obtained by Weinstein [14] and by Nawa [15,16]. Only in 2003,
however, Merle and Raphael proved that all singular solutions
of the critical NLS (4) with power moderately above Pcr
collapse with the asymptotic ψR profile at the loglog blowup
rate [17], and see also [18–20]. Concurrently, Moll, Gaeta
and Fibich demonstrated experimentally that the profile of
collapsing laser beams is given by the R profile [21]. Therefore,
all the rigorous, asymptotic, numerical and experimental
evidence until 2005 suggested that all stable singular solutions
of the critical NLS collapse with the ψR profile.

1.1.2. Supercritical NLS (σd > 2)
In contrast to the extensive theory on singular solutions of

the critical NLS, much less is known about singular solutions
of the supercritical NLS. Numerical simulations carried out
during the 1980s (see, e.g. [22–24]) showed that solutions of
the supercritical NLS collapse with a self-similar asymptotic
profile ψS , i.e. ψ ∼ ψS , where

ψS(t, r) =
1

L1/σ S
( r

L

)
eiτ+i Lt

4L r2
, τ =

∫ t

0

ds
L2(s)

. (11)

The blowup rate of these solutions turned out to be a square
root, i.e.

L(t) ∼ fc
√
(Tc − t), t → Tc, (12)
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1 In [25], Budd showe
solutions of the supercrit
turned out to be unstable.
Fig. 1. Illustration of ring radius rm (t) and width L(t).
where fc > 0. In addition, the self-similar profile S is the
solution of

S′′(r)+
d − 1

r
S′

− S

+ |S|
2σ S +

(
f 4
c

16
r2

− i
f 2
c (σd − 2)

4

)
S = 0, (13)

S′(0) = 0, S(∞) = 0.

As in the critical case, |S| attains its maximum at r = 0, and
is monotonically decreasing for 0 ≤ r < ∞. The self-similar
profileψS involves a complicated nonlinear eigenvalue problem
which is not fully understood. Therefore, unlike the critical
case, the theory of singular solutions of the supercritical NLS
lacks a rigorous basis at present.

1.2. Singular ring solutions

As we have seen, until 2005 all known stable singular
solutions of the critical and supercritical NLS collapsed with
the ψR and ψS profiles, respectively.1 Since the maximum
of R and S is attained at r = 0, and since they decrease
monotonically for 0 ≤ r < ∞, we will refer to ψR and ψS
as singular peak solutions.

In 2005, we presented the first singular nonpeak solutions of
the NLS, for the radially-symmetrical two-dimensional cubic
critical NLS (σ = 1, d = 2)

iψt (t, r)+ ψrr +
1
r
ψr + |ψ |

2ψ = 0, (14)

see [26]. These solutions have the asymptotic self-similar ring
profile ψG , i.e. ψ(t, r) ∼ ψG(t, r), where

ψG(t, r) =
1

L(t)
G (ρ) eiτ+i Lt

4L r2
,

τ =

∫ t

0

ds
L2(s)

, ρ =
r
L
. (15)
d that Eq. (13) also gives rise to ring (multibump)
ical NLS. The corresponding ψS profile, however,
The profile G is the solution of

G ′′(ρ)+
G ′

ρ
+

[
f 4
c

16
ρ2

− 1
]

G + G3
= 0,

G ′(0) = 0, G(∞) = 0,

and has a ring shape, i.e. it attains its global maximum at some
ρm > 0 and decreases monotonically away from ρm . Therefore,
ψG is a singular ring profile and not a singular peak solution.
The blowup rate of ψG is different from that of ψR , as it is a
square root with no loglog correction. Numerical simulations
suggested that the ψG profile is a stable solution of the radially-
symmetrical NLS (14). Since, however, the G-profile has an
infinite L2 norm, it is still an open issue whether the ring profile
is maintained all the way up to the singularity (see Section 1.4).

In 2006, Raphael [27] discovered and rigorously proved the
existence and stability of singular ring solutions of the radially-
symmetrical supercritical two-dimensional quintic NLS (σ =

2, d = 2)

iψt (t, r)+ ψrr +
1
r
ψr + |ψ |

4ψ = 0. (16)

These singular solutions have the asymptotic self-similar
profile ψ(t, r) ∼ ψP (t, r), where2

ψP (t, r) ∼
1

L1/2(t)
P(ρ)eiτ(t), ρ =

r − rm(t)
L(t)

, (17)

P(ρ) =
4√3 sech

1
2 (2ρ), rm(t) is the ring radius, i.e. the location

of the ring peak, and L(t) is the ring width, see Fig. 1.
Since rm(t) > 0, ψP is a self-similar ring profile. The blowup
rate of ψP is a square root with a loglog correction, i.e. the
loglog law (10). A unique feature of ψP is that the collapsing
ring is standing, i.e. the ring’s radius approaches a positive
constant as the solution collapses

lim
t→Tc

rm(t) = rm(Tc) > 0.

Therefore, ψP is different from all previously known singular
peak and ring solutions of the NLS, since it blows up on a
sphere r = rm(Tc) > 0, whereas ψR, ψS and ψG collapse at
a point (or, at most at, a finite number of isolated points [28]).
2 This form of ψP is the one stated in Theorem 1 in [27].
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1.3. Main results

As seen in Section 1.2, until now there have been two
“isolated” cases of singular ring solutions of the NLS: ψG in
the critical case d = 2, σ = 1, and ψP in the supercritical
case d = 2, σ = 2. In this study, we show that these two
ring solutions belong to a new family of ring solutions of the
radially-symmetrical NLS equations

iψt (t, r)+ ψrr +
d − 1

r
ψr + |ψ |

2σψ = 0, (18a)

where

2/d ≤ σ ≤ 2, 1 < d. (18b)

These new ring solutions were first observed in [26], where
we presented preliminary simulations of the supercritical
three dimensional cubic NLS (σ = 1, d = 3)

iψt (t, r)+ ψrr +
2
r
ψr + |ψ |

2ψ = 0, (19)

that collapse with a ring profile ψQ , which is different from
the asymptotic ring profiles ψG and ψP . Indeed, in the case
of ψG , the ring radius satisfies rm(t) = ρm L(t). Therefore, ψG
undergoes equal-rate collapse, i.e. the ring radius and the ring
width go to zero at the same rate. In the case of ψP , the
collapsing ring is standing, i.e. rm(t) ≈ rm(Tc) > 0. In contrast,
we have seen in [26] that for the supercritical ring solution
of (19), rm(t) ∼ r0L p(t) where p ≈ 1/2. Therefore ψQ does
not undergo equal rate collapse, nor is it a collapsing standing
ring. Hence, the asymptotic profileψQ is different fromψG and
from ψP .3

In order to find the new asymptotic profile ψQ , we first
note that rm = r0L(t), rm ≈ r0L1/2(t), and rm ≈ r0
forψG , ψQ andψP , respectively. Therefore,ψQ is “somewhere
between” ψG and ψP . In order to “interpolate” the ring radius
rm(t) between ψG and ψP , we set rm(t) = r0Lα(t), so that
α = 1 correspond to the equal-rate profile ψG and α = 0
corresponds to the standing ring profile ψP .

The next step in our analysis is to note that ψP is given by

ψP (t, r) =
1

L1/2(t)
P(ρ)eiτ(t)+i Lt

4L (r−rm (t))2 ,

ρ =
r − rm(t)

L(t)
. (20)

This expression differs from the one in Theorem 1 of [27], see
Eq. (17), by the quadratic radial phase term. This term goes to
zero as t → Tc, which is why it did not appear in Theorem 1
of [27]. Nevertheless, this radial phase term will be vital for our
analysis of the supercritical ring solutions.

Next, we construct the new asymptotic ring profile ψQ by
“interpolating” the asymptotic profile of ψG and of ψP as
follows:
3 After this paper was submitted, we found out that collapsing ring solutions
of the 3D cubic NLS (19) were already observed by Degtiarev, Zakharov and
Rudakov [29].
Proposition 1. Eq. (18) has singular ring solutions whose
asymptotic profile is given by

ψQ =
1

L1/σ (t)
Q (ρ) eiτ+iα Lt

4L r2
+i(1−α)

Lt
4L (r−rm (t))2 , (21a)

where

τ =

∫ t

0

ds
L2(s)

, ρ =
r − rm(t)

L
, rm(t) = r0Lα(t). (21b)

Proof. This result follows from Eq. (63) and from
Propositions 4, 16 and 23. �

The new asymptotic profileψQ has a two radial phase terms.
This is different from all previously known asymptotic NLS
profiles, which have a single radial phase term. In order to
understand the meaning of this new feature, we note that the
quadratic phase term centered at r = 0 corresponds to focusing
towards the origin, and the quadratic phase term centered at
r = rm(t) corresponds to focusing towards rm(t). The blowup
behaviour of ψQ is, therefore, a combination of “global” ring
focusing towards the origin, together with ring width shrinking
towards rm(t).

The parameter α defines the relation between the ring
radius rm(t) and the ring width L(t). The admissible values of
α are (Lemma 8)

0 ≤ α ≤ 1.

The relation between α and (σ, d) is given in the following
proposition:

Proposition 2. Let ψ be a singular ring solution of the
NLS (18) with an asymptotic blowup profile ψ(t, r) ∼

ψQ(t, r), where ψQ is given by (21). Then

α =
2 − σ

σ(d − 1)
. (22)

Proof. This follows from Lemmas 12, 18 and 20. �

Therefore, α = 1 (i.e. equal-rate collapse) if and only
if σd = 2, α = 0 (i.e. standing ring collapse) if and only
if σ = 2, and 0 < α < 1 if and only if 2/d < σ < 2.

The blowup rate of ψQ is as follows:

Proposition 3. Let ψ be a singular ring solution of the
NLS (18) with an asymptotic blowup profile ψ(t, r) ∼

ψQ(t, r), where ψQ is given by (21). Then, the blowup rate is
given by

L(t) ∼


(Tc − t)

1
1+α ,

2
d

≤ σ < 2, (0 < α ≤ 1),√
2π(Tc − t)

log log 1
Tc−t

, σ = 2, (α = 0).
(23)

Proof. This follows from Propositions 4, 16 and 23. �
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Fig. 2. Blowup rate p of the collapsing ring solutions is equal to 1
1+α

for 2/d ≤ σ < 2 (solid) and to 1/2 (ignoring the loglog correction) for σ = 2 (full circle).
Dashed curve is the rigorous lower bound (24), dash-dotted curve is the rigorous upper bound (26). A: 1 < d < 3. B: 3 < d.
As noted, until this study all known stable NLS singular
solutions collapsed with either a square-root blowup rate or a
square-root blowup rate with a loglog correction. Since 1/(1 +

α) assumes the values [1/2, 1), Proposition 3 shows that the
NLS can have singular ring solutions with any blowup rate p,
1/2 ≤ p < 1. In addition, it shows that there is a continuous
transition between the blowup rate of singular ring solutions
of the critical and the supercritical NLS (i.e. as σd → 2+).
This continuity is exactly the opposite from singular peak
solutions, where there is a discontinuity between the loglog
law blowup rate (10) of the critical NLS, and the square root
blowup rate (12) of the supercritical NLS. Proposition 3 also
shows that there is a discontinuity in the blowup rate at σ = 2.
Indeed, L(t; σ → 2−, d) ∼ fc · (Tc − t), whereas

L(t; σ = 2, d) ∼

√
2π(Tc − t)

log log 1
Tc−t

.

The discontinuity at σ = 2 is also exactly the opposite from
a singular peak solution, since the supercritical peak solutions
have a square root blowup rate for all σd > 2.

Cazenave and Weissler [30] proved that the blowup rate4 of
the NLS (18a) is bounded by

L(t) ≤ M(Tc − t)
1
2 −

σd−2
4σ , 2 < d,

2
d

≤ σ <
2

d − 2
. (24)

According to Proposition 3, the blowup rate of the singular
ring solutions is given by 1

1+α
for 2

d ≤ σ < 2. Since,

1
2

−
σd − 2

4σ︸ ︷︷ ︸
(24)

≤
1
2

≤
1

1 + α︸ ︷︷ ︸
(23)

=
1
2

+
σd − 2

2(2 + σd − 2σ)
, (25)

the 1
1+α

blowup rate is consistent with the rigorous bound (24).
The two inequalities in (25) are equalities only for σd =

2. Hence, the bound (24) is sharp only in the critical case.
The rigorous bound (24) is monotonically decreasing in σd,
4 In this study we define the blowup rate as L(t) =
‖ψ(0,·)‖σ∞
‖ψ(t,·)‖σ∞

, see (6).

Cazenave and Weissler define the blowup rate as L(t) = ‖∇ψ‖
−1
2 . These two

definitions are equivalent (see Appendix A).
whereas the blowup rate is monotonically increasing in σd.
Therefore, as σd increases the gap between the 1

1+α
blowup

rate and the rigorous bound increases, see Fig. 2.
Let J [Θ] =

∫ Tc
0 ‖∇ψ(t)‖Θ

2 dt . Merle [31] proved that for
blowup solutions of the supercritical NLS, J [Θ] < ∞ for
Θ < 1 and infinite for Θ > Θ2 = 4σ/(2σ + 2 − dσ). This
implies that the blowup rate p is bounded by

p < 1. (26)

Until now, numerical simulations (of peak-type supercritical
solutions) suggested that the upper bound (26) is very crude.
Our results show that, in fact, this bound is sharp, in the sense
that for any 0 < ε � 1, there exist NLS blowup solutions with
blowup rate p = 1 − ε. (see Fig. 2).

In the supercritical case 2/d < σ ≤ 2, the quasi self-similar
profile Q, see Proposition 1, is given by

Q(ρ; σ) = ω
1
σ (1 + σ)

1
2σ [sech(ωσρ)]

1
σ , (27)

where w is a constant (See Propositions 16 and 23). The fact
that the profile of the supercritical ring solutions is the well-
known subcritical ground state profile, which is a well-behaved
object, is a new and surprising phenomenon. This property is
likely to lead to a considerable simplification in the analysis of
the supercritical ring solutions. Indeed, the analysis of peak-
type solutions in the critical case [17] was considerably easier
for d = 1 than for d ≥ 2, precisely because for d = 1 the
ground state is given explicitly by the critical one dimensional
sech profile.

Fig. 3 presents the classification of NLS singular ring
solutions as a function of (σ, d):

(A) In the subcritical case (σd < 2), all NLS solutions globally
exist, hence no collapsing ring solutions exist.

(B) The critical case σd = 2 corresponds to α = 1. In this
case, the new asymptotic profile ψQ reduces to the ψG
asymptotic profile (15). Since rm(t) = r0L(t), these
solutions undergo equal rate collapse. The blowup rate of
these critical ring solutions is a square root.

(C) The supercritical case 2/d < σ < 2 corresponds to
0 < α < 1. In this case, ring solutions collapse with the
new asymptotic profile ψQ (21) at a 1

1+α
blowup rate. The
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Fig. 3. Classification of singular ring solutions of the NLS as a function of σ and d.
ring radius decays to zero as rm(t) = r0Lα(t), i.e. at a
slower rate than L(t).

(D) The case σ = 2 corresponds to α = 0. Since rm(t) ≡ r0,
the solution is a collapsing standing ring. The blowup rate
of these solutions is given by the loglog law (10).

(E) Finally, in the case σ > 2 our preliminary numerical
simulations suggest that it is characterized by standing ring
solutions that collapse with a square root blowup rate with
no loglog correction term, and with an asymptotic profile
different from ψQ (Section 9).

1.4. Level of rigor

The derivation of the analytical results in this study
(Propositions 1–3) is based on several assumptions and
conjectures which have yet to be made rigorous. In particular,
these results assume the existence of and convergence to the
new asymptotic profile ψQ , see (21), and that the blowup
rate is of the form L(t) ∼ (Tc − t)p or slightly faster, see
Conjecture 11. However, the impressive agreement between the
analytical predictions of Propositions 1–3 and the numerical
results (in particular, Figs. 23 and 24), provides a strong support
to the validity of these assumptions.

At present, it is still an open problem whether the critical
ring solution ψG is maintained all the way up to the singularity.
In particular, this question arises since the profile G has an
infinite L2 norm. As we noted in [26], this does not necessarily
conflict with the fact that the L2 norm of the blowup solution is
finite. The reason for this is that the collapsing solutions match
the G profile only in the ring region, hence the slowly-decaying,
infinite-power tail of the G profile may be “irrelevant” to the
NLS solution.

There is no such infinite-power “problem” in the supercrit-
ical case, as the self-similar profile Q is given by a finite-
power sech profile, see Eq. (27). Therefore, it is much more
likely that these ring solutions would indeed maintain the ring
profile all the way up to the singularity.

1.5. Paper outline

The paper is organized as follows: in Section 2 we analyse
ring solutions in the critical NLS and extend the results of [26]
from d = 2 and σ = 1 to all σd = 2 and d > 1. In Section 3
we present the first systematic numerical study of Raphael’s
standing ring solutions. Section 4 is devoted to the analysis of
singular ring solution for 2/d ≤ σ ≤ 2 and 1 < d. In particular,
we derive the new asymptotic profile ψQ , see (21), relation (22)
for the value of α, and the blowup rate of these singular
rings solutions. In Section 5 we show that both critical and
supercritical ring solutions undergo strong collapse. Section 6
is devoted to a systematic numerical study of the new singular
ring solutions, which shows an excellent agreement between the
numerical results and the analytic predictions of Section 4. In
Section 7 we use a geometrical optics argument and numerical
simulations to show that the ψQ profile is an attractor for high-
power super-Gaussian initial conditions. In Section 8 we test
numerically the stability of the new ring solutions and show that
they are stable as solutions of the radially-symmetrical NLS,
but unstable with respect to symmetry breaking perturbations.
Finally, in Section 9 we present preliminary simulations of the
case σ > 2. The numerical methods used in this study are
described in Section 10.

2. Collapsing ring solutions of the critical NLS (σ d = 2)

In this section, we consider singular ring solutions of the
critical NLS

iψt (t, r)+ ψrr +
d − 1

r
ψr + |ψ |

4
d ψ = 0, d > 1, (28)
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i.e. when σ = 2/d . In [26], we studied Eq. (28) when d = 2.
We now extend these results to any d > 1.5

Proposition 4. Let ψ be a singular ring solution of the
critical NLS (28) with an asymptotic self-similar blowup profile
ψ(t, r) ∼ ψG(t, r) where

ψG(t, r) =
1

Ld/2(t)
G(ρ + r0)eiτ+i Lt

4L r2
, τ =

∫ t

0

ds
L2(s)

,

ρ =
r − rm(t)

L(t)
, (29a)

and

rm(t) = r0L(t), (29b)

where G is a real-valued function and r0 = arg max G(r) > 0.
Then,

1. The blowup rate L(t) is a square root, i.e.

lim
t→Tc

L(t)
√

Tc − t
= lim

t→Tc

d
dt L(t)

d
dt (

√
Tc − t)

= fc > 0. (30)

2. The self-similar ring profile G(ρ) is the solution of

G ′′(ρ)+
d − 1
ρ + r0

G ′
+

[
f 4
c

16
(ρ + r0)

2
− 1

]
G

+ G
4
d +1

= 0, −r0 < ρ < ∞, (31)

with the boundary conditions

G ′(−r0) = 0, G(∞) = 0.

Proof. The blowup rate of the critical NLS has the rigorous
bound L(t) ≤ M

√
Tc − t , where M is a constant [32,33].

Therefore, we only need to consider the case where the blowup
rate is equal to or faster than a square root. In Proposition
1 in [26], we showed that if the blowup rate is a square root
then G is a solution of (31). In Proposition 3 in [26], we showed
that if the blowup rate is faster than a square root then G is the
solution of (5).6 Since Eq. (5) does not admit ring solutions (see
Appendix C), it follows that the blowup rate is a square root and
that G is a solution of (31). �

Proposition 4 describes singular solutions of the NLS that
have the following characteristics:

(1) The collapsing part of the solution has a self-similar ring
profile G.

(2) The blowup rate L is a square root.
(3) Equal-rate collapse, i.e. the ring width L(t) and radius

rm(t) go to zero at the same rate, see Eq. (29b).

Since in [26] we considered only the case d = 2, we now
present numerical results for d 6= 2. For example, in Fig. 4
5 The definition of ρ in Proposition 4 is different from its definition in [26], in
order to conform to the notations used in this paper where ρ = 0 is the location
of the ring peak.

6 Although Propositions 1 and 2 in [26] were proved for d = 2, the proof for
the general case (d 6= 2) is identical.
Fig. 4. A: Solution of the critical NLS (28) with d = 7/4 and with the initial
condition ψ0

G at t = 1.04 (1/L = 1.01, dashes), t = 5.73 (1/L = 1.61, solid)
and t = 7.89 (1/L = 2.45, dash-dots). B: The solution at focusing levels
1/L = 1.61 (solid), 1/L = 3.20 × 108 (dashes) and 1/L = 2.90 × 1013 (dash-
dots), normalized according to (33). Dotted curve is the G profile with r0 ≈

16.8392, G(−r0) ≈ 3.373 × 10−5 and fc ≈ 0.3705. All four curves are
indistinguishable. C: Same data as in B on a semilogarithmic scale.

we solve the critical NLS (28) for d = 7/4 with the G-profile
initial condition

ψ0
G = G(r + r0)e−i f 2

c
8 r2

, (32)

where G(r) is the solution of the Eq. (31) with G(−r0) =

5 × 10−5. and fc ∼= 0.376. Fig. 4A shows that the numerical
solution indeed collapses with a ring profile. In order to check
for self-similarity, in Fig. 4B we rescale the numerical solution
according to7

ψrescaled =
1

L1/σ (t)
ψ

(
r − rm(t)

L

)
,

L(t) =

max
r

|ψ0|
σ

max
r

|ψ |σ
, rm(t) = rm(0)L(t), (33)
7 Note that under the normalization (33), maxr |ψrescaled| = maxr |ψ0|.
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Fig. 5. Determining the blowup rate of the solution of Fig. 4.

where rm(0) = 16.83 and σ = 2/d . As expected, the
normalized solution remains unchanged while focusing by a
factor of 1010, indicating that the solution indeed undergoes
self-similar collapse. In addition, the self-similar profile is in
excellent match with G, which is the solution of Eq. (31)
with r0 ≈ 16.8392, G(−r0) ≈ 3.373 × 10−5 and fc ≈

0.3705. A closer look on the same data on a semilogarithmic
scale (Fig. 4C) shows that the solution is “only” quasi self-
similar. Indeed, the self-similar profile ψG characterizes only
the collapsing ring region but not the inner and outer regions,
i.e.

ψ(t, r) ∼

ψinner 0 ≤ r < ρ1L(t)
ψG ρ1L(t) ≤ r ≤ ρ2L(t)
ψouter ρ2L(t) < r,

(34)

where 1 � ρ1 � r0 � ρ2.
We now consider the blowup rate of the solution of Fig. 4.

In general, it is hard to distinguish a strictly square root blowup
rate from a square root blowup with a small (e.g. loglog)
correction. In order to do that, we monitor the dynamics
of L L t =

1
2 (L

2)t (see Section 10.2 for details on how
L L t is recovered from the simulation), since limt→Tc L L t =

− f 2
c /2 < 0 in the case of a strict square root blowup rate
L(t) ∼ fc
√

Tc − t , whereas limt→Tc L L t = 0 when the
blowup rate is faster than a square root [26]. Indeed, in Fig. 5

we see that limt→Tc L L t = −0.06667 = −
f 2
c
2 < 0, indicating

that L ∼ 0.365
√

Tc − t , i.e. that the blowup rate is a square
root.

Finally, we consider the stability of ψG . To do so, we
randomly perturb the initial ring profile from Fig. 4 as

ψ
0,noise
G = (1 + ε1(r))ψ0

G + ε2(r), (35)

where ε1(r) and ε2(r) are uniformly distributed in [−0.3, 0.3]

and in [−0.1, 0.1], respectively. After focusing by a factor
of ≈1.09, the noise in the ring region (i.e. the area of high
nonlinearity) disappears (Fig. 4B). Subsequently, the noise at
the inner and outer regions also decreases, until after focusing
by a factor of ≈10, the solution approaches a clean asymptotic
ring profile ψG (Fig. 4C). Therefore, we conclude that ψG is a
strong attractor.

In [26], it was shown numerically for the two-dimensional
critical case (d = 2, σ = 1) that ψG is stable as a solution of
Eq. (28) under radial perturbations such as (35), but unstable as
a solution of

iψt (t, x, y)+ ∆ψ + |ψ |
2ψ = 0, ∆ = ∂xx + ∂yy, (36)

with respect to perturbations that breakup the radial symmetry.
When d = 7/4, the radially-symmetrical NLS (28) has no
analogue such as (36), therefore there is no notion of stability
with respect to symmetry-breaking perturbations in this case.

3. Raphael’s standing ring solutions of the supercritical
NLS (d = 2, σ = 2)

3.1. Theory

Consider the quintic two-dimensional radially-symmetrical
NLS

iψt (t, r)+ ψrr +
1
r
ψr + |ψ |

4ψ = 0, ψ(0, r) = ψ0(r).

(37)
Fig. 6. Solution of the critical NLS (28) with d = 1.75 and the noisy initial condition (35) at A: t = 0 (1/L = 1); B: t = 1.96 (1/L = 1.09); C: t = 6.98
(1/L = 10.03). Dotted curve in B and C is the asymptotic ψG profile (29), the two curves are nearly indistinguishable.
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This equation is supercritical, since σd = 2 · 2 > 2. As
noted in Section 1, until recently, the only known stable singular
solutions of supercritical NLS equations had a self-similar peak
profile, i.e. ψ(t, r) ∼ ψS(t, r), where

ψS(t, r) =
1

L1/σ (t)
S(ρ)eiτ+i Lt

4L r2
,

τ =

∫ t

0

ds
L2(s)

, ρ =
r

L(t)
, (38)

and S is the “peak-type” solution of

Sρρ +
d − 1
ρ

Sρ +

(
f 2
c

16
ρ2

− 1 − i
fc(σd − 2)

4

)
S

+ |S|
2σ S = 0, (39)

S′(0) = 0, S(∞) = 0.

In addition, these solutions have a square-root blowup rate,
i.e. L(t) ∼ fc

√
Tc − t .

Recently, Raphael proved the existence and stability of a new
type of singular solutions of Eq. (37) that have a self-similar
ring profile:

Theorem 5 ([27]). Let

P =
4√3
√

sech(2r) (40)

be the solution of

P ′′(r)− P + P5
= 0, P ′(0) = 0, P(∞) = 0. (41)

There exists an open subset H ⊂ H1
r such that the following

holds:
Let ψ0 ∈ H, then the corresponding solution ψ to (37)

blows up in finite time 0 < Tc < ∞ according to the following
dynamics:

(1) Description of the singularity formation: there exist L(t) >
0, rm(t) > 0 and τ(t) ∈ R such that

ψ(t, r)− ψP (t, r)
L2

−→ ψbg(r) as t → Tc, (42)

where

ψP =
1

√
L(t)

P (ρ) eiτ(t), ρ =
r − rm(t)

L(t)
, (43)

such that the radius of the singular circle converges to a
positive constant, i.e.

lim
t→Tc

rm(t) = rm(Tc) > 0.

(2) Estimate on the blowup rate:

lim
Tc−t

L(t)
(

log | log(Tc − t)|
Tc − t

) 1
2

=

√
2π

‖P‖L2
. (44)

Theorem 5 proves the existence of singular ring solutions of
the quintic two-dimensional NLS (37) that have the following
properties:

1. The collapsing part of the solution,ψP has a self-similar ring
profile.
2. The blowup rate is a square root with a loglog correction.
3. The ring is standing, i.e. the ring’s radius rm(t) approaches

a positive constant as the solution collapses.

Raphael’s solutions are different from all previously known
singular solutions of the NLS, since they blow up on the
circle r = rm(Tc) > 0, whereas all other known singular
solutions of the NLS collapse at a point.

3.2. Motivation for Theorem 5

The motivation for Theorem 5 is as follows: for a standing
ring solution ψP , ψrr ∼

1
L2(t) and 1

rψr ∼
1

rm (Tc)
1

L(t) in

the ring region. Therefore, as t → Tc, the 1
rψr term in Eq.

(37) becomes negligible compared with ψrr in the ring region
r ≈ rm(Tc). Hence, near the singularity, Eq. (37) reduces to the
one-dimensional critical NLS

iψt (t, r)+ ψrr + |ψ |
4ψ = 0. (45)

From NLS theory [17,34] it follows that for solutions of Eq.
(45) whose peak at time t is at rm(t), the collapsing core blows
up with the self-similar P profile (40) at the loglog law blowup
rate, i.e.

ψP =
1

√
L(t)

P
(

r − rm(t)
L

)
eiτ(t)+i Lt

4L (r−rm (t))2 , (46)

where L satisfies (44). Therefore, we “recover” the results of
Theorem 5 on the asymptotic profile (43) (but see Section 3.2.1)
and on the blowup rate.

Remark 6. In fact, since collapse in the critical NLS is
highly sensitive to small perturbations [1], the validity of
using (45) to approximate (37) is not obvious. Indeed, while this
approximation will prove useful for σ = 2 and any d > 1 (see
Section 4.2), it will fail for σ < 2 (see Section 4.4).

3.2.1. Radial phase
According to Theorem 5, the asymptotic profile of the

collapsing part of the solution is given by

ψP =
1

√
L

P
(

r − rm(t)
L

)
eiτ(t).

However, from the analysis in [27] and by (46), this asymptotic
profile also has a radial dependence in the phase:

Lemma 7. The asymptotic profile ψP of the collapsing part of
standing ring solutions of Eq. (37) is given by

ψP =
1

√
L

P(ρ)eiτ(t)+iS(t,ρ), ρ =
r − rm(t)

L
,

τ (t) =

∫ t

0

ds
L2(s)

, (47a)

where

S =
L t

4L
(r − rm(t))2. (47b)



64 G. Fibich et al. / Physica D 231 (2007) 55–86
Fig. 7. Solution of the quintic NLS (37) with ψ0 given by (49).
The phase S does not appear in Eq. (43), since it decays
to zero at the singularity. Indeed, since ρ =

r−rm (t)
L , then

S =
L L t

4 ρ2. According to Theorem 5, L is given by the loglog
law, hence L L t → 0. Since ρ = O(1) in the ring region, we
see that lim t→Tc

ρ=O(1)
S = 0. As we shall see in Section 4, this

radial phase will be vital for our analysis of the supercritical
ring solutions.

3.3. Numerical study

It is remarkable that Raphael discovered and proved the
existence and stability of the standing ring solutions without
any numerical simulations. We now present a systematic
numerical study of Raphael’s standing ring solutions. The goals
of these simulations are

(1) To present the first numerical observation of Raphael’s
standing ring solutions.

(2) To test the stability of the standing ring solutions.
According to Theorem 5, these solutions are stable with
respect to radially-symmetrical perturbations. However,
Theorem 5 does not give an indication to the size of the
basin of attraction of these solutions.

(3) To test the stability of the standing ring solutions
with respect to symmetry-breaking perturbations, i.e. as
solutions of the supercritical quintic two-dimensional NLS

iψt (t, x, y)+ ∆ψ + |ψ |
4ψ = 0, ∆ = ∂xx + ∂yy . (48)

(4) To confirm that the radial phase of the standing ring
solutions is given by (47b).

(5) To serve as a benchmark for the numerical investigation of
ring solutions in the general supercritical NLS in Section 6,
where analytical results on the blowup rate are unavailable.

3.3.1. Blowup profile
We solve the quintic two-dimensional radially-symmetric

NLS (37) with the initial condition

ψ0
P = P(r − 5) =

4√3
√

sech(2(r − 5)). (49)

In Fig. 7, we plot the early stages of the collapse as the solution
focuses by a factor of ≈3. As predicted by Theorem 5, as the
ring amplitude increases and the ring width shrinks, the ring
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Fig. 8. Solution of Fig. 7 at A: t = 0.144197 (L−1
= 390.2, rm (t) = 4.87745, dashes), t = 0.1442062 (L−1

= 1174.3, rm (t) = 4.87739, solid), B:
L−1

= 9.29 × 109 (rm (t) = 4.87737, dashes), L−1
= 2.14 × 1010 (rm (t) = 4.87737, solid). Values of t in graph B differ only in the 14th digit or after,

therefore only the focusing levels 1/L are quoted.
Fig. 9. Ring radius rm (t) as a function of the focusing factor 1/L for the
solution of Fig. 7.

radius does not go to zero, but rather converges to a positive
constant. In Fig. 8, we plot the solution as it continues to
collapse over 10 orders of magnitude. As in Fig. 7, the ring
amplitude grows larger and larger and its width narrower and
narrower, while the ring radius rm(t) hardly changes. In Fig. 9
we plot rm(t) as a function of the focusing factor 1/L . It can be
seen that limt→Tc rm(t) ∼= 4.8773, i.e. the ring is standing and
not shrinking towards the origin.

To confirm that the collapse is indeed self-similar, i.e. of the
form

|ψ | ∼
1

L1/σ (t)
P
(

r − rm(t)
L(t)

)
(50)

with σ = 2, we rescale the solution ψ according to

ψrescaled = L1/σψ

(
r − rm(t)

L

)
, L =

max
r

|ψ0|
σ

max
r

|ψ |σ
,

rm(t) = argmaxr |ψ |. (51)

The only difference between the rescalings (33) and (51) is in
the calculation of rm(t). In (33), the dependence of the ring
radius rm(t) on L(t) is analytically known and therefore can be
used in the rescaling. However, in the case of supercritical rings
the relation between rm(t) and L(t) is not known, therefore it
is recovered from the solution. Fig. 10 shows that all rescaled
plots of the solution at focusing levels varying from L−1

=

101 to L−1
= 1010 are indistinguishable, indicating that the

solution is indeed self-similar while focusing over 10 orders
of magnitude. The rescaled profiles are in perfect fit with the
P profile (40) around the peak r = rm(t). Plotting the same
data on a semi-logarithmic scale (Fig. 10B) shows that the
rescaled profile is self-similar around the peak r ≈ rm(t), or
more precisely, for ρ = (r −rm(t))/L = O(1), but not near the
beam centre (ρ � −1) or far outside (ρ � 1), in agreement
with the analysis in [27]. Hence, as in the case of the critical
G profile ring solution (see Section 2), Raphael’s standing ring
solutions are “only” quasi self-similar.

To observe the radial phase (47b), we show in Fig. 11
that in the ring region −5 ≤ ρ ≤ 5 the phase of the
numerical solution Snumerical is nearly indistinguishable from
the phase Spredicted predicted in (47b). To calculate Spredicted,
we recover L L t from the numerical solution (see Section 10.2
for more details) and calculate

Spredicted(ρ) = Spredicted(0)+
L L t

4
ρ2,

where Spredicted(0) = Snumerical(0).

3.3.2. Blowup rate
Next, we consider the blowup rate of the standing ring

solutions. To do so, we first assume that L ∼ fc(Tc − t)p

and find the best fitting p (see Section 10.2 for details on
how L is recovered from the simulation). Fig. 12A shows
that p ≈ 0.5001, indicating that the blowup rate is square root
or slightly faster. Next, we check whether L is slightly faster
than a square root, by plotting L L t as a function of the focusing
factor 1/L . Recall that for a square root blowup rate, L L t will
go to a negative constant as t → Tc, while for a faster-than-
a-square root blowup rate L L t goes to zero [26]. The graph
of Fig. 12B does not give a conclusive evidence as to whether
L L t goes to a negative constant or to zero. However, we know
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Fig. 10. A: Solution of Fig. 8 rescaled according to Eq. (51) at t = 0.05 (1/L = 5, solid), t = 0.14420739600 (1/L = 3.58 × 105, dashes), and t =

0.14420739601 (1/L = 1.35 × 1010, dot-dashes). Dotted curve is P =
4√3

√
sech(2ρ). All four curves are indistinguishable around the peak r = rm (t). B:

Same data on a semi-logarithmic scale.
Fig. 11. Phase Snumerical of the solution of Fig. 8 at L−1
= 6.31 × 105 (solid).

Dashed curve is Spredicted = τ +
L L t

4 ρ2
= 32.3 − 0.07467ρ2. The two curves

are indistinguishable for −5 ≤ ρ ≤ 5.

from Theorem 5 that the blowup rate is given by the loglog law.
Therefore, Fig. 12B provides an example of a “typical” plot
of a faster than a square root blowup rate. In contrast, Fig. 5
provides an example in which L L t goes to a negative constant
and the blowup rate is a square root. Since these two graphs
are “sufficiently different” from each other, in the subsequent
sections we will use Figs. 5 and 12B as “benchmarks” for
determining the blowup rate in cases where analytical results
on the blowup rate are unavailable.

3.3.3. Stability
In order to test the radial stability of Raphael’s standing

ring solutions, we randomly perturb the initial ring profile from
Fig. 8 as follows:

ψ
0,noise
P = (1 + ε1(r))ψ0

P + ε2(r), (52)

where ε1(r) and ε2(r) are uniformly distributed in [−0.3, 0.3]

and in [−0.1, 0.1], respectively. Note that for this initial
condition both the ring and the inner and outer regions
are perturbed (see Fig. 13A). After focusing by a factor
of ≈1.2, the noise in the ring region (i.e. the area of high
nonlinearity) disappears (Fig. 13B). Subsequently, the noise
at the inner and outer regions also decreases, until after
focusing by a factor of ≈6, the solution approaches a clean
standing ring profile (Fig. 13C). We, therefore, conclude that
the standing ring solutions ψQ , see Eq. (47), are strong
attractors in the radially-symmetrical case. Of course, we know
from Theorem 5 that the standing ring solutions are stable
with respect to radially-symmetrical perturbation. However,
Theorem 5 does not give an indication as to the magnitude of
Fig. 12. A: L as a function of Tc − t (solid) for the solution of Fig. 8. Dotted curve is the fitted curve c(Tc − t)0.5001 where c = 0.341. B: L L t as a function of the
focusing factor 1/L .
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Fig. 13. Solution of the quintic 2D NLS (37) with the (slightly focused) noisy initial condition (52). A: t = 0, 1/L = 1.5. B: t = 0.0661, 1/L = 1.677. C:
t = 0.195, 1/L = 10.61 (solid). Dotted curve is the modulated P profile (40).
Fig. 14. Solution of the NLS (48) with slightly elliptical initial condition (53).
their basin of attraction. This numerical example, as well as
other tests that we conducted, show that the basin of attraction
of these solutions is of significant magnitude.

In [27], Raphael did not consider the stability of standing
ring solutions with respect to anisotropic perturbations. We now
test the stability of the standing ring solutions as solutions of
the NLS (48). To do that, we deterministically breakup the
symmetry of the initial-condition (49) by inducing a small
ellipticity to the initial condition, i.e.

ψ
0,elliptic
P = ψ0

P (

√
1.02x2 + y2). (53)

After very little focusing (≈1.5), the ring breaks into two
filaments that are located on the intersection of the ring with
the x-axis (see Fig. 14 and also Section 10.3). Therefore,
we conclude that Raphael’s standing ring solutions are highly
unstable with respect to perturbations that break up the radial
symmetry. This result is not surprising, since in numerous
studies it has been found that a ring is an unstable structure
in the NLS (see e.g. [35–37,26,38–40].
4. Analysis of supercritical ring solutions

All the NLS singular ring solutions observed until now (see
Sections 2 and 3) have been of the form

|ψ | ∼
1

L1/σ (t)
F
(

r − rm(t)
L(t)

)
.

These solutions have the following characteristics:

1. The rings amplitude scales as L−1/σ and blows up as its
width L goes to zero.

2. The ring radius rm(t) converges either to zero or to a positive
constant as t → Tc. In the first case, blowup occurs at
the origin. In the latter case, the solution blows up on a d-
dimensional sphere.

In Section 2, we presented ring solutions of the critical
NLS (σd = 2) that undergo equal-rate collapse, i.e., rm(t) =

r0L(t). In Section 3, we presented standing ring solutions of
the quintic two-dimensional NLS (d = 2, σ = 2) that collapse
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Fig. 15. Solution of the supercritical NLS (54) with initial condition ψ0 =

10e−r4
at t = 0.038711 (solid), t = 0.038720 (dots) and t =

0.038723 (dashes).

in amplitude and width, but the ring radius does not go to zero,
i.e. rm(t) → rm(Tc) > 0.

We now ask, do singular ring solutions exist in other cases
and if so, how do they behave? For example, in [26], we
presented preliminary simulations of the supercritical three-
dimensional cubic NLS (d = 3, σ = 1)

iψt (t, r)+ ψrr +
2
r
ψr + |ψ |

2ψ = 0. (54)

We showed that, as in the critical case, there exist solutions that
collapse with a ring profile (see Fig. 15). However, unlike the
critical case, the ring radius of these solutions decayed to zero
as rm(t) ≈ cL p(t) where p ≈ 0.49993, i.e, at a slower rate
than the ring width L . These collapsing solutions are also not
standing ring solutions, since the ring radius shrinks to zero as
the solution approaches the singularity, limt→Tc rm(t) = 0.

We now analyse collapsing ring solutions of the radially-
symmetrical supercritical NLS equation

iψt (t, r)+ ψrr +
d − 1

r
ψr + |ψ |

2σψ = 0,

2/d ≤ σ ≤ 2, 1 < d. (55)

We do not consider the case of d = 1, since in one dimension
there is no meaning to a ring solution, as r = 0 is no different
than r > 0. In addition, we consider only the case σd ≥ 2,
since this is a necessary condition for collapse.

The asymptotic profile that has been used in the asymptotic
analysis of all singular solutions of the NLS (both peak-type
and ring-type) is

ψF =
1

L1/σ F
( r

L

)
eiτ+i Lt

4L r2
, τ =

∫ t

0

ds
L2(s)

, (56)

see (6). For a ring profile with radius r0, it is convenient to
define G(r) = F(r + r0), so that in terms of G, the peak of
the ring is at ρ = 0. This shift gives rise to the asymptotic
profile

ψG =
1

L1/σ G
(

r − rm(t)
L

)
eiτ+i Lt

4L r2
,

τ =

∫ t

0

ds
L2(s)

, (57a)

where

rm(t) = r0L(t), (57b)

see Eq. (29). The asymptotic profile (57) describes ring
solutions that undergo equal-rate collapse, see (57b). In this
case, limt→Tc rm(t) = 0, i.e. the ring radius shrinks to zero.

The asymptotic form of Raphael’s standing ring solutions, as
given by Theorem 5 together with our addition of the quadric
phase term (47b), is

ψP =
1

L1/σ P
(

r − rm(t)
L

)
eiτ+i Lt

4L (r−rm (t))2 ,

τ =

∫ z

0

ds
L2(s)

, (58a)

where

lim
t→Tc

rm(t) = rm(Tc) > 0, (58b)

see Eq. (46). This form is similar to the asymptotic form (57),
but with two important differences:

1. The quadratic phase term is centred at r = 0 in (57),
corresponding to focusing towards the origin, but at r =

rm(t) in (46), corresponding to focusing towards rm(t).
2. The ring radius rm(t) is rm(t) = r0L(t) in (56) but rm(t) ≡

r0 in (58).

We now ask: What is the asymptotic profile ψQ and blowup
rate of ring solutions such as in Fig. 15? Let us note that
the ring radius is rm(t) = r0L(t) in ψG , rm(t) = r0 in ψP
and rm(t) ≈ r0

√
L(t) for the ring solutions ψQ as in Fig. 15.

Therefore, the blowup profile ψQ of these solutions is different
fromψG andψP , but appears to be “somewhere between” these
two asymptotic profiles. Therefore, we construct the asymptotic
profile ψQ by “interpolating” ψG and ψP .

First we “interpolate” the “common components” of ψG
and ψP . In both ψG and ψP , the solution ψ is self-similar
around the ring radius rm(t), i.e.

|ψ | ∼
1

L1/σ Q(ρ), ρ =
r − rm(t)

L
,

see (57) and (58). Therefore, we will retain this form in the
new asymptotic profile. Next, we “interpolate” the “different
components” of the two asymptotic profiles ψG and ψP as
follows:

(1) We linearly interpolate the two quadratic phase terms
of (57) and (58), so that they describe ring solutions whose
radius shrinks to zero, but at the same time their width
shrinks toward rm(t).

(2) We set rm(t) = r0Lα , so that (57b) and (58b) correspond
to α = 1, and α = 0, respectively, and the new ring
solutions correspond to 0 < α < 1.



G. Fibich et al. / Physica D 231 (2007) 55–86 69
Therefore, our starting point is the asymptotic profile

ψQ =
1

L1/σ Q
(

r − r0Lα

L

)
eiτ+iγ (t)r2

+iδ(t)(r−r0 Lα)2 . (59)

Substitution of the form (59) into the supercritical NLS (55)
gives

Qρρ + (d − 1)
L

Lρ + r0Lα
Qρ − Q + Q2σ+1

− AQ

+ i(B + ρC)Qρ + iDQ = 0, (60)

where

A = (Lρ + r0Lα)2L2γt (t)+ L4ρ2δt (t)− 2αρr0L2+αL tδ(t)
+ 4L2(γ (t)(Lρ + r0Lα)+ δ(t)Lρ)2,

B = −r0αLαL t + 4γ (t)r0Lα+1,

C = −L L t + 4(γ (t)+ δ(t))L2,

D = −
1
σ

L L t + 2 [d · γ (t)+ δ(t)] L2

+ 2(d − 1)δ(t)
L3ρ

Lρ + r0Lα
.

We require that Q would be a real profile that depends only of
ρ. Therefore, Setting B = 0 in Eq. (60) gives

γ (t) = α
L t

4L
. (61)

Setting C = 0 and substituting (61) gives

δ(t) = (1 − α)
L t

4L
. (62)

Substitution of (61) and (62) in (59) gives rise to the new ring
asymptotic profile

ψQ =
1

L1/σ Q (ρ) eiτ+iα Lt
4L r2

+i(1−α)
Lt
4L (r−rm (t))2 , (63a)

where

τ =

∫ t

0

ds
L2(s)

, ρ =
r − rm(t)

L
, rm(t) = r0Lα(t), (63b)

and Q is the solution of

Qρρ +
(d − 1)L

Lρ + r0Lα
Qρ − Q + |Q|

2σ Q + AQ + iDQ = 0,

(64a)

with

A = −
1
4
[(L3ρ2

+ 2αr0L2+αρ + αr2
0 L1+2α)L t t

−α(1 − α)r0(r0L2α
+ 2Lα+1ρ)L2

t ],

D =
d − 1

2

[
α −

2 − σ

σ(d − 1)
+ (1 − α)

Lρ
Lρ + r0Lα

]
L L t . (64b)

As noted, α expresses the relation between the ring width L and
radius rm(t). We now discuss the possible values of α:

• α = 1: In this case, the new phase term in (63) vanishes,
hence (63) reduces to (56). Since rm(t) = r0L , this case
corresponds to equal-rate collapse, e.g. theψG ring solutions
of the critical NLS (Section 2).

• α = 0: In this case, the “old” phase term disappears. Since
rm(t) ≡ r0, this case describes a standing ring solution,
e.g. Raphael’s standing ring solutions ψP , see (40), of the
supercritical quintic NLS (Section 3).

• α > 1: In this case,

ρ =
r − r0Lα

L
≈

r
L
, L −→ 0.

Therefore, this case does not describe ring solutions, but
rather the familiar singular peak solutions of the NLS.

• α < 0: In this case, rm(t) → ∞, hence the ring power (L2

norm) becomes infinite, see Appendix F. Since the power is
conserved, there are no ring solutions in this case.

• 0 < α < 1: In this case, both the “old” term α L t
4L r2 and

the new phase term (1 − α) L t
4L (r − r0Lα)2 affect the blowup

dynamics. Since rm(t) = r0Lα , the ring radius shrinks to
zero, but at a slower rate than the rate of the ring width L .

Therefore, we have the following result:

Lemma 8. Let ψ be a singular ring solution of the NLS (55)
with an asymptotic blowup profile ψ(t, r) ∼ ψQ(t, r), where
ψQ is given by (63), and Q is a ring profile. Then, 0 ≤ α ≤ 1.

4.1. Technical lemmas

The following lemmas will be needed for the analysis of
supercritical rings in Sections 4.2–4.4.

Lemma 9. The boundary conditions for a ring solution of Eq.
(64) are{

Q′(ρ = −r0) = 0, Q(∞) = 0 α = 1,
Q′(ρ = −∞) = 0, Q(∞) = 0 0 ≤ α < 1.

In addition, since the location of the ring peak is at ρ = 0:

Q′(0) = 0, Q(0) 6= 0.

Proof. See Appendix B. �

Lemma 10. A necessary condition for the solvability of
equation

u′′(ρ)− u + |u|
2σu = ε[(a + bi)u + cρu′

], (65)
u(0) 6= 0, u′(0) = 0, u(∞) = 0, u′(−∞) = 0,

where a, b, c, ε ∈ R and 0 < |ε| � 1, is b = 0.

Proof. See Appendix D. �

In what follows, we will also assume that near the
singularity, L(t) decays as (Tc − t)p or slightly faster (e.g. with
a loglog correction term):

Conjecture 11. The blowup rate L(t) satisfies

L ∼ fc(t)(Tc − t)p, L t ∼ fc(t)
d
dt

[(Tc − t)p
],

L t t ∼ fc(t)
d2

dt2 [(Tc − t)p
],
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8 Standing ring solutions also exist in the case σ > 2 but they are not of the
form (63), see Section 9.
as t → Tc, where

lim
t→Tc

fc(t)
(Tc − t)ε

= ∞

for any ε > 0.

4.2. Case α = 0: Standing rings

We now prove the following:

Lemma 12. Let ψ be a singular ring solution of the NLS (55)
with an asymptotic blowup profile ψ(t, r) ∼ ψQ(t, r), where
ψQ is given by (63) with Q = Q(ρ) ∈ R, and assume that
Conjecture 11 holds. Let α = 0. Then,

(1) σ = 2.
(2) The blowup rate L(t) is equal to or faster than

√
Tc − t .

Proof. When α = 0, by Eq. (64) and Lemma 9, the equation
for Q is

Q′′(ρ)+ (d − 1)
L

Lρ + r0
Qρ − Q + |Q|

2σ Q + AQ

+ iDQ = 0, (66)

A = −
1
4

L3L t tρ
2,

D =
d − 1

2

[
−

2 − σ

σ(d − 1)
+

Lρ
Lρ + r0

]
L L t ,

where

Q(0) 6= 0, Q′(0) = 0, Q′(−∞) = 0,

Q(∞) = 0. �

By Conjecture 11, L3L t t ∼ p(p − 1) f 4
c (Tc − t)4(p−1/2).

Therefore, A = −
1
4 L3L t tρ

2 is bounded only if p ≥
1
2 , hence

the blowup rate L(t) is equal to or faster than
√

Tc − t .
Since limt→Tc L = 0,

D ∼ D(0)
= −

2 − σ

2σ
L L t , t −→ Tc. (67)

From the requirement that Q would be a real profile, it follows
that D, hence D(0), should go to zero as t → Tc.

(1) If the blowup rate is a square root, i.e. limt→Tc
L

√
Tc−t

=

fc > 0, then D(0)
∼

2−σ
2σ

f 2
c
2 . Therefore, from the

requirement that D(0) should go to zero, it follows that σ =

2.
(2) If the blowup rate is faster than a square root, then ε(t) =

L L t → 0. Therefore

lim
t→Tc

D = lim
t→Tc

D(0)
= 0.

Let us consider the solvability of Eq. (66). We first show
that, to leading order, Eq. (66) reduces to

Q′′(ρ)− Q + |Q|
2σ Q = i

2 − σ

2σ
ε(t)Q,

−∞ < ρ < ∞ (68)
subject to (see Lemma 9)

Q(0) 6= 0, Q′(0) = 0, Q′(−∞) = 0,
Q(∞) = 0.

Indeed, from a dimensional argument it follows that A =

O(ε2(t)) � ε(t). In addition, since the blowup rate is faster
than a square root, limt→Tc L t = −∞. Therefore

(d − 1)
L

Lρ + r0
= O(L) � L L t = ε(t).

Hence, to leading order, Eq. (66) reduces to (68). By
Lemma 10, Eq. (68) is solvable only if its right-hand side
vanishes. Therefore, σ = 2. �

Lemma 12 shows that:8

Corollary 13. Standing ring solutions (α = 0) of the form (63)
exist only for σ = 2.

We now show that the opposite direction is also true.

Lemma 14. Let ψ be a singular ring solution of the NLS (55)
with an asymptotic blowup profile ψ(t, r) ∼ ψQ(t, r), where
ψQ is given by (63) and Q = Q(ρ) ∈ R. In addition, assume
that Conjecture 11 holds. If σ = 2 then α = 0.

Proof. By Lemma 8, 0 ≤ α ≤ 1. We will see in Lemma 20 that
α =

2−σ
σ(d−1) for 0 ≤ α ≤ 1. Therefore, σ = 2 implies α = 0.

�

The question whether when σ = 2 the blowup rate is faster
than or equal to

√
Tc − t is not answered by Lemma 12. By

Theorem 5, when d = 2 the blowup rate is given by the
loglog law. In addition, our numerical simulations in Section 6
for d = 1.5 (See Fig. 21), as well as additional simulation for
d = 2.1 and d = 3 (data not shown), suggest that the blowup
rate is slightly faster than a square root. Moreover, since the
arguments used in Section 3.2 can be applied with any d > 1,
this suggests that the blowup rate is given by the loglog law for
any d > 1.

Conjecture 15. Let ψ be a singular ring solution of the quintic
NLS

iψt (t, r)+ ψrr +
d − 1

r
ψr + |ψ |

4ψ = 0, (69)

such that the conditions of Lemma 14 hold. Then, the blowup
rate is given by the loglog law (10).

Lemmas 12 and 14 together with Conjecture 15 imply that

Proposition 16. Let ψ be a singular solution of the NLS (55)
with an asymptotic blowup profile ψ(t, r) ∼ ψQ(t, r), where
ψQ is given by (63) and Q = Q(ρ) ∈ R. Let σ = 2 and
assume that Conjecture 15 holds. Then,

(1) α = 0.
(2) The blowup rate is given by the loglog law (10).
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(3) The self-similar profile Q is given by (40).

Proposition 16 shows that standing ring solutions exist in
the quintic NLS (69) for any d > 1. Therefore, Proposition 16
extends Theorem 5 which proved the existence of standing ring
solutions only for d = 2. Indeed, the result of Proposition 16
can be motivated using identical arguments to the one we used
to motivate Theorem 5 in Section 3.2.

Remark 17. Proposition 16 also suggests the existence of
multibump standing ring solutions of the quintic NLS (69).
Indeed, let us consider two collapsing standing rings ψ (1)Q and

ψ
(2)
Q with corresponding radii r (1)m (T (1)c ) � r (2)m (T (2)c ). Let us

construct the initial condition

ψ0(r) = ψ
(1)
Q (T (1)c − γ, r)+ (1 + ε)ψ

(2)
Q (T (2)c − γ, r),

where γ is smaller than T (1)c and T (2)c . Since the coupling
between the two rings is exponentially small, they each collapse
at t (i) ≈ γ . Therefore, a proper choice of ε can give rise to a
double ring solution for which both rings blow up at the same
time. Similarly, a multibump solution with more than two rings
can be constructed.

4.3. Case α = 1: Ring solutions in the critical NLS

When α = 1, the new asymptotic form (63) reduces to (56)
and the solution undergoes equal-rate collapse. The following
lemma characterizes all singular ring solutions in this case:

Lemma 18. Let ψ be a singular ring solution of the NLS (55)
with an asymptotic blowup profile ψ(t, r) ∼ ψQ(t, r), where
ψQ is given by (63) and Q = Q(ρ) ∈ R, and assume that
Conjecture 11 holds. Let α = 1. Then

(1) σd = 2.
(2) The blowup rate L(t) is equal to

√
Tc − t .

Proof. When α = 1, by Eq. (64) and Lemma 9,

Q′′(ρ)+
d − 1
ρ + r0

Qρ − Q + |Q|
2σ Q + AQ + iDQ = 0, (70)

Q(0) 6= 0, Q′(0) = 0, Q′(−r0) = 0,
Q(∞) = 0,

where

A = −
1
4

L3L t t (ρ + r0)
2, D =

σd − 2
2σ

L L t .

By Conjecture 11, L3L t t ∼ p(p − 1) f 4
c (Tc − t)4(p−1/2).

Therefore, A = −
(ρ+r0)

2

4 L3L t t is bounded only if p ≥
1
2 ,

hence the blowup rate L(t) is equal to or faster than
√

Tc − t .
If the blowup rate is faster than a square root, then L L t → 0.

Therefore, as t → Tc, Eq. (70) reduces to

Q′′(ρ)+
d − 1
ρ + r0

Qρ − Q + |Q|
2σ Q = 0, (71)

Q(0) 6= 0, Q′(0) = 0, Q′(−r0) = 0,
Q(∞) = 0,
Under the transformation ρ̃ = ρ+r0 and R(ρ̃) = Q(ρ), Eq.
(71) becomes Eq. (5) with the additional constraint that R′(ρ̃ =

r0) = 0. However, Eq. (5) does not admit ring solutions, see
Appendix C. Therefore, although the excited states {R(n)}∞n=1
of this equation may fulfill the additional constraint, none of
them are ring solutions. Hence the blowup rate cannot be faster
than a square root.

From the requirement that Q is a real profile, it follows that
D should go to zero as t → Tc. Since the blowup rate is a

square root, i.e. L/
√

Tc − t ∼ fc > 0, then D ∼
2−σd

2σ
f 2
c
2 .

Therefore, from the requirement that D should go to zero, it
follows that σd = 2. �

Lemma 18 proves that

Corollary 19. Singular ring solutions whose asymptotic profile
is given by (56) exist only in the critical NLS.

This result explains why attempts to find stable equal-rate
ring solutions of the form (56) in the supercritical NLS (see,
e.g. [25]) did not succeed.

The opposite direction, i.e. that ring solutions of the critical
NLS undergo equal-rate collapse (α = 1) was already proved
in Proposition 4.

4.4. Case 0 < α < 1: Ring solutions in the supercritical NLS
(2/d < σ < 2)

Lemma 20. Let ψ be a singular ring solution of the NLS (55)
with an asymptotic blowup profile ψ(t, r) ∼ ψQ(t, r), where
ψQ is given by (63) and Q = Q(ρ) ∈ R. In addition, assume
that Conjecture 11 holds. Let 0 < α < 1. Then,

(1)

α =
2 − σ

σ(d − 1)
. (72)

(2) The blowup rate L(t) is equal to or faster than (Tc − t)
1

1+α .

Proof. As we have seen, the equation for Q is given by (64).
By Conjecture 11, as t → Tc,

A ∼ −
αr2

0
4

[
L2α+1L t t − (1 − α)L2αL2

t

]
= −

αr2
0

4
p(αp − 1) f 2(1+α)

c (Tc − t)2((α+1)p−1).

Therefore, A is bounded as t → Tc only if p ≥
1

1+α
, hence the

blowup rate L(t) is equal to or faster than (Tc − t)
1

1+α , i.e.,

L(t) ∼ fc(Tc − t)
1

1+α , fc ≥ 0. (73)

In particular, the blowup rate is faster than a square root, hence
limt→Tc L L t = 0.

Since limt→Tc L = 0,

D ∼ D(0)
=

d − 1
2

[
α −

2 − σ

σ(d − 1)

]
L L t , t → Tc. (74)
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9 Definition (81) does not apply to standing ring solutions (σ = 2), since
they concentrate power on a sphere and at not a point.
The requirement that Q is real is satisfied, since L L t −→ 0
implies that

lim
t→Tc

D = lim
t→Tc

D(0)
= 0.

Let us consider the solvability of Eq. (64). We first show that,
to leading order, Eq. (64) reduces to

Q′′(ρ)−

[
1 +

αr2
0

4(1 + α)2
f 2(1+α)
c

]
Q + |Q|

2σ Q

=

[
d − 1

r0
Q′

−
α

2(1 + α)2
f 2(1+α)
c ρQ

− i
d − 1

2

(
α −

2 − σ

σ(d − 1)

)
Q
]
ε(t),

−∞ < ρ < ∞ (75)

where ε(t) = L1−α , subject to (see Lemma 9)

Q(0) 6= 0, Q′(0) = 0, Q(∞) = 0,
Q′(−∞) = 0.

Indeed, from a dimensional argument it follows that

L3L t t = ε2(t) � ε(t).

Hence, substituting (73) into A of Eq. (64b) gives

A = −
α f 2(1+α)

c

2(1 + α)2

[
r2

0
2

− ρε(t)

]
+O(ε2).

By Lemma 10, Eq. (75) is solvable only if

d − 1
2

(
α −

2 − σ

σ(d − 1)

)
= 0,

from which relation (72) follows. Finally, as t → Tc, Eq. (64)
reduces to Eq. (78). �

By Lemma 8, 0 ≤ α ≤ 1. Since relation (72) for α
is a one-to-one relation, the opposite direction of Lemma 20
immediately follows:

Lemma 21. Let ψ be a singular ring solution of the NLS (55)
with an asymptotic blowup profile ψ(t, r) ∼ ψQ(t, r), where
ψQ is given by (63) and Q = Q(ρ) ∈ R. Let 2/d < σ < 2.
Then, α is given by (72).

The question whether the blowup rate is faster than or equal
to (Tc − t)

1
1+α is not answered by Lemma 20. However, the

numerical simulations of Section 6.1 suggest that

Conjecture 22. Let ψ be a singular solution of the NLS (55)
with an asymptotic blowup profile (63), where 0 < α < 1.
Then, the blowup rate L is equal to (Tc − t)

1
1+α .

From Lemma 21 and Conjecture 22 we have the following
result:

Proposition 23. Let ψ be a singular solution of the NLS (55)
with an asymptotic blowup profile ψ(t, r) ∼ ψQ(t, r), where
ψQ is given by (63). Let 2/d < σ < 2 and assume that
Conjecture 22 holds. Then
(1)

α =
2 − σ

σ(d − 1)
.

(2) The blowup rate is 1
1+α

, i.e.,

lim
t→Tc

L(t)

(Tc − t)
1

1+α

= fc > 0. (76)

(3) The self-similar profile Q is given by

Q(ρ; σ) = ω
1
σ (1 + σ)

1
2σ [sech(ωσρ)]

1
σ , (77)

which is the solution of

Qρρ − ω2 Q + Q2σ+1
= 0, (78)

where

ω =

√
1 −

αr2
0

4(1 + α)2
f 2(1+α)
c . (79)

The result of Proposition 23 is very surprising in light
of the “success” of the motivation for Theorem 5 and for
Proposition 16, see Sections 3.2 and 4.2. Indeed, for collapsing
ring solutions of the form (63), the ring radius rm(t) = O(Lα).
and ψr (r) = O(L−(1+σ)). in the ring region r ≈ rm(Tc).
Therefore d−1

r ψr = O(L−(α+1+σ)) and ψrr = O(L−(2+σ)).
As a result, when 0 < α < 1 the d−1

r ψr term in Eq. (55)
becomes negligible compared with ψrr as t → Tc. Hence, near
the singularity, the d-dimensional NLS (55) can be expected to
“reduce” to the one-dimensional NLS

iψt (t, r)+ ψrr + |ψ |
2σψ = 0. (80)

However, for 2/d < σ < 2, this is a subcritical one-
dimensional NLS, whose solutions do not become singular.
Therefore, although the d−1

r ψr . term becomes smaller and
smaller than the other terms as the solution collapses, it cannot
be neglected near the singularity.

5. Strong collapse (2/d ≤ σ < 2)

Let us define the power that collapses into the ball r < ε as

Pε(t) =

∫
r<ε

|ψ(t, r)|2rd−1dr.

The power that collapses into the singularity point at r = 0 can
be defined as9

Pcollapse = inf
ε

lim
t→Tc

Pε(t). (81)

It is customary to distinguish between two cases:

(1) Strong collapse, in which the amount of power collapsing
into the singularity is positive, i.e. Pcollapse > 0;

(2) Weak collapse, in which the amount of power collapsing
into the singularity is zero, i.e. Pcollapse = 0.
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Fig. 16. Pε(t) as a function of the focusing level 1/L for the solution of Fig. 18: ε = 0.1 (solid), ε = 0.05 (dash-dots). Dotted curve is Pcollapse =

rd−1
0

∫
∞

−∞
Q2dr ≈ 22.477Pcr.
10 To confirm the agreement with (82), we first extract r0. For this choice of
ψ0

Q , L0 =
1

2σ and r0 Lα0 = 5, therefore, r0 =
5

Lα0
= 5 · 2ασ ≈ 8.887. Hence

by (82), Pcollapse = rd−1
0

∫
∞

−∞
Q2dr ≈ 41.864 = 22.477Pcr.
It has been known that singular solutions of the critical
NLS undergo strong collapse, whereas singular solutions of the
supercritical NLS undergo weak collapse [3]. However, these
characterizations were only for singular peak solution. We now
show that this is not the case for collapsing ring solutions.
Rather, both critical and supercritical ring solutions undergo
strong collapse.

Lemma 24. Let ψ be a singular solution of the NLS (55) with
an asymptotic blowup profile ψ(t, r) ∼ ψQ(t, r), where ψQ is
given by (63). Then

Pcollapse =

‖ψ0
Q‖

2
2 σ = 2/d,

rd−1
0

∫
∞

−∞

Q2dρ 2/d < σ < 2.
(82)

In particular, ψ undergoes strong collapse.

Proof. See Appendix E. �

Remark. In Section 2 we saw that in the critical case σ = 2/d,
the self-similar profile Q is given by G, the solution of (31).
We also noted that the collapse is only quasi self-similar,
see Eq. (34). Therefore, although the solution of (31) has an
infinite power (L2 norm), the slowly-decaying, infinite-power
oscillatory tail of the G profile is “irrelevant” to the critical
NLS ring solution [26]. Hence, ‖ψ0

Q‖
2
2 in (82) corresponds to

the power of the G profile in the ring region, i.e.
∫ ρ2−r0
ρ1−r0

G2(ρ+

r0)(ρ + r0)
d−1dρ.

In the critical NLS, singular peak-type solutions that
collapse with the ψR profile (8) undergo strong collapse with
Pcollapse = Pcr, independently of the initial condition. In
contrast, in the case of singular ring solutions, Pcollapse depends
on the initial condition and increases as a function of the
initial power. Therefore, ring collapse is more efficient than
“peak collapse”, in the sense that it concentrates a larger
fraction of the initial power into the singularity. For example, a
Gaussian initial condition with power equal to 40Pcr collapses
with the ψR profile, hence only 2.5% of its initial power
collapses into the singularity. In contrast, a super-Gaussian
initial condition with the same initial power collapses with a
ring profile that concentrates 70% of the initial power into the
singularity [26].

This difference is even more dramatic in the supercritical
NLS, since in this case Pcollapse = 0 for “peak-type” solutions,
while Pcollapse > 0 for ring solutions. For example, in Fig. 16
we plot Pε=0.1 in the case σ = 1.1 and d = 2.1 (α ≈ 0.7438)
for the initial condition ψ0 = 1.02ψ0

Q , where ψ0
Q is given

by (84). Initially, rm(t) � 0.1 and Pε=0.1 � 1. However, once
rm(t) � 0.1, Pε=0.1 ≈ 41.491 = 22.276Pcr. In Fig. 16 we also
plot Pε=0.05. In this case the initial stage when Pε=0.05 � 1
is longer, since rm(t) ≈ 0.05 at a later stage of the focusing.
However, once rm(t) � 0.05, Pε=0.05 approaches the same
value of ≈ 22.276Pcr, showing that Pcollapse ≈ 22.276Pcr. The
initial power of the solution is P(0) = ‖ψ0‖

2
2 = 22.733Pcr,

hence 98% of the initial power collapses into the singularity.10

6. Numerical investigations

We now present numerical investigations of supercritical and
critical ring solutions of Eq. (55) for 0 ≤ α ≤ 1.

6.1. 0 < α < 1

We first present a systematic study of the following two-ring
solutions in the case 0 < α < 1:

(1) σ = 1.1 and d = 2.1. The expected value of α is from Eq.
(72),

α =
2 − 1.1

1.1(2.1 − 1)
=

90
121

≈ 0.74380. (83a)
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Fig. 17. Solution of Eq. (55) with σ = 1.1 and d = 2.1 and the initial condition (84) at: A: t = 0.0723, (1/L = 4.40, dashes), t = 0.172, (1/L = 8.77, solid)
and t = 0.238, (1/L = 21.63, dash-dots), B: 1/L = 3.69 × 107 (dashes), 1/L = 4.72 × 107 (dash-dots) and 1/L = 6.15 × 107 (dots). Solution is so close to
the singularity that for all three curves t ≈ Tc = 0.2659 and the three times differ only in the 14th digits. C: The three curves from A and the three curves from
B normalized according to (51), all six curves are nearly indistinguishable. The bold dotted curve is the asymptotic profile Q (77) D: Same data as in C on a
semilogarithmic scale.
(2) σ = 1.25 and d = 3. The expected value of α is

α =
2 − 1.25

1.25(3 − 1)
=

3
10
. (83b)

We use the initial condition ψQ(0) = ψ0
Q , see Eq. (63), with

L(0) =
1

2σ
,

L t (0)
L(0)

= −4, r0Lα(0) = 5, ω = 1,

to obtain,

ψ0
Q = 2(1 + σ)1/2σ

[
sech(2σσ(r − 5))

]1/σ e−iαr2
−i(1−α)(r−5)2 .

(84)

The choice L(0) =
1

2σ gives an initial condition which is
sufficiently localized, so as to prevent a possible truncation of
the sech ring tail near the origin.

We first present a simulation with d = 2.1 and σ = 1.1.
Fig. 17A and B shows that the numerical solution indeed
collapses with a ring profile up to focusing factors of O(107).
In order to check for self-similarity we rescale the solution
ψ according to (51). Fig. 17C shows that all rescaled plots
of the solution at focusing levels varying from 101 to 107

are nearly indistinguishable, indicating that the solution is
indeed self-similar while focusing over six orders of magnitude.
In addition, Fig. 17C also shows that the rescaled profile
perfectly fits the Q profile (77). Plotting the same data on
a semilogarithmic scale (Fig. 17D) shows that the solution
is “only” quasi self-similar, i.e. the self-similar profile ψQ
characterizes the collapsing ring region (−5 ≤ ρ ≤ 5) but not
the inner and outer regions (|ρ| ≥ 5).

Next, we calculate the parameter α of the ring radius
shrinkage. According to Eq. (63), rm(t) = r0Lα where α ≈

0.74380, see Eq. (83a). To find the parameter α numerically,
we calculate rm(t) from Eq. (51) and plot rm(t) as a function
of 1/L . Fig. 18A shows that rm(t) ≈ 11.826206Lα with
α = 0.74391, which differs from the predicted value of α by
less than 0.015%.

We now consider the blowup rate of these solutions.
According to Lemma 20 the blowup rate is either faster than
or equal to (Tc − t)

1
1+α . To determine numerically which of

these two possibilities hold, we first plot the blowup rate L
as a function of Tc − t and find the best fitting exponent p
for L ∼ fc(Tc − t)p. The results in Fig. 18B show that
L ∼ fc(Tc − t)0.57342, perfectly fitting the expected value of

1
1+α

= 0.57346 with a relative error of less than 0.007%. Since
plotting L as a function of Tc − t is not sensitive enough to tell a

1
1+α

blowup rate from a slightly-faster-than-a 1
1+α

blowup rate,
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Fig. 18. Solution of Fig. 17. A: rm (t) as a function of L . Dotted curve is the fitted curve cL(t)0.74391 where c = 11.826206. B: L as a function of (Tc − t) on a
logarithmic scale. Dotted curve is the fitted curve L = c(Tc − t)0.57342 where c = 0.24285. C: LαL t as a function of 1/L .

Fig. 19. Solution of Eq. (55) with σ = 1.25 and d = 3 (α = 0.3) for the initial condition (84). A: Rescaled solution according to (51) at focusing levels 1/L = 171.8,
(solid), 1/L = 9789.5, (dashed) and 1/L = 60619.23, (dash-dots), dotted curve is the asymptotic profile Q (77), all curves are indistinguishable around the peak.
B: rm (t) as a function of 1/L . Dotted in the fitted curve rm (t) = cL0.300021(t) where c = 9.21. C: L as a function of (Tc − t) on a logarithmic scale. Dotted curve
is the fitted curve L = (Tc − t)0.76919 where c = 0.383. D: LαL t as a function of 1/L .
we plot LαL t as a function of the focusing factor 1/L . For a
blowup rate equal to 1

1+α
, LαL t goes to a negative constant, but

for a blowup rate faster than 1
1+α

, LαL t goes to zero. The results
in Fig. 18C shows that limt→Tc LαL t = −0.0846, indicating

that L ∼ fc · (Tc − t)
1

1+α with fc ≈ 0.333. Therefore, we
conclude that the blowup rate is equal to (Tc − t)

1
1+α .
Similar results are presented in Fig. 19 for the case of d = 3
and σ = 1.25. In this case, it follows from Lemma 20 that
rm(t) = r0Lα where α = 0.3, and that the blowup rate L
is faster than or equal to (Tc − t)

1
1+α where 1

1+α
≈ 0.7692.

Fitting rm(t) as a function of 1/L shows that rm(t) ≈ r0Lα ,
where α = 0.30021, see Fig. 19B. Plotting L as a function
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Fig. 20. Solution of the quintic NLS (69) with d = 1.5 and with ψ0 given by (49).
of (Tc − t) show that L ∼ fc(Tc − t)0.76919. Therefore, the
relative errors in the values of the shrinkage rate and the blowup
rate are less than 0.04%. The results in Fig. 19D shows that
limt→Tc LαL t = −0.286, indicating that L ∼ fc(Tc − t)

1
1+α

with fc ∼= 0.584. Therefore, we conclude that the blowup rate
is equal to (Tc − t)

1
1+α .

6.2. α = 0

In Section 3 we presented a systematic numerical
investigation of Raphael’s standing ring solution,ψP , for σ = 2
and d = 2 (for which α = 0). According to Lemma 14,
ring solutions of the supercritical quintic NLS (69) collapse as
standing ring solutions for any d > 1 and not just for d = 2. To
see that, we now solve numerically the case σ = 2 and d = 1.5.
In Fig. 20, we plot the early stages of the collapse as the solution
focuses by a factor of ≈3. As predicted by Lemma 14, as the
ring amplitude increases and the ring width shrinks, the ring
radius does not go to zero, but rather converges to a positive
constant. To confirm that the collapse is self-similar according
to (50), we rescale the solution ψ according to (51). Fig. 21A
shows that all rescaled plots of the solution at focusing levels
varying from 101 to 105 are indistinguishable, indicating that
the solution is indeed self-similar while focusing over 4 orders
of magnitude. In addition, Fig. 21A shows that the rescaled
profile perfectly fits the Q profile (77). Fig. 21B shows that
the ring radius converge to rm(Tc) ≈ 4.901, indicating that the
solution is a standing ring solution. According to Proposition 23
the blowup rate is

√
Tc − t or faster. Indeed, Fig. 21C shows

that L ∼ (Tc−t)0.49883. Plotting L L t does not give a conclusive
indication whether it goes to a negative constant or to zero, i.e. if
the blowup rate is a square root blowup or slightly faster, see
Fig. 21D. However, comparison with the benchmark cases of
Fig. 5D and Fig. 12D suggests that the blowup rate is faster
than a square root.

6.3. α = 1

We have already presented systematic numerical investiga-
tions of equal-rate collapsing ring (α = 1) in two cases:

(1) σ = 1 and d = 2 in [26].
(2) σ =

8
7 and d =

7
4 in Section 2.
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ig. 21. Solution of the NLS (55) with σ = 2 and d = 1.5 (α = 0) and the initial condition (84). A: Rescaled solution according to (51) at focusing levels
/L = 19.04 (solid), 1/L = 7.48 × 105 (dashed), and 1/L = 1.45 × 1010 (dash-dots), dotted curve is the asymptotic profile Q (77), all four curves are
ndistinguishable around the peak. B: rm (t) as a function of 1/L . C: L as a function of (Tc −t) on a logarithmic scale. Dotted curve is the fitted curve c(Tc −t)0.49883

here c = 0.00041. D: L L t as a function of 1/L .
6.4. Observation of radial phase

We have already observed the radial phase for the case α = 0
in Fig. 11. We now consider the radial phase of supercritical
ring solutions for 0 < α < 1. Our goal is to show that indeed,
the phase of the solution is given by

S(r, t) =
L t

4L

[
αr2

+ (1 − α)(r − rm(t))2
]
, (85)

or equivalently, by

S(ρ, t) =
1
4

L L t

[
ρ2

+
2αrm(t)

L
ρ +

αr2
m(t)
L2

]
,

ρ =
r − rm(t)

L
. (86)

A-priori, this implies that the phase should consist of a parabola
centred at r = 0 and another parabola centred at r = rm(t).
However, as we have seen in Fig. 17, the collapse is only quasi
self-similar, i.e. ψQ of Eq. (63) describes the solution only
around the ring’s peak. Accordingly, Eq. (85) is expected to
describe the phase only around the ring peak at r = rm(t) and
not near the origin at r = 0, i.e. for ρ = O(1) in (86).

To verify that the radial phase is given by (86), we compare
the numerical phase Snumerical with the phase Spredicted predicted
by (86), where L is recovered from the simulation (see
Section 10.2 for more details) and αr2

m(t)/L2
= Snumerical (ρ =
Fig. 22. Phase of the solution of Fig. 18 at t = 0.263 (1/L = 92.03). Dashed
curve is Spredicted = −0.0066(ρ2

+ 61.03ρ)− 6.352.

0, t). In Fig. 22 it can be seen that for −5 ≤ ρ ≤ 5, Snumerical
and Spredicted are indistinguishable. The phase in this regime
is nearly linear, since as L → 0, the quadratic term in (86)
becomes negligible, i.e.

S(ρ)− S(0) ∼
1
4

L L t ·
2αrm(t)

L
ρ =

αrm(t)L t

2
ρ

=
αr0LαL t

2
ρ

∼ −
α f 1+α

c r0

2(1 + α)
ρ.
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Fig. 23. Computed values of α (circles) for σ = 1, 1.1, 1.2, . . . , 2. Solid curve is Eq. (72). A: d = 2, B: d = 2.1, C: d = 3.
Fig. 24. Computed blowup rate (circles) for d = 2 and σ = 1, 1.1, 1.2, . . . , 2.
Solid curve is 1

1+α
.

Therefore, the slope of S is negative and asymptotically
independent of t .

6.5. Numerical verification of Proposition 2 for the value of α

The prediction of Proposition 2 for the value of α was found
to be in excellent agreement in all six simulations presented
so far in this paper. We now systematically verify the validity
of Proposition 2 for d = 2, d = 2.1 and d = 3 and for
σ = 1, 1.1, 1.2, . . . , 2. Fig. 23 shows that in all 3×11 cases, the
difference between the numerical value of α and the analytical
predictions is less than 0.1%.

6.6. Numerical verification of Proposition 3 for the blowup rate

The six simulations presented so far in this paper perfectly
agreed with the blowup rates predicted in Proposition 3. To
validate the predicted blowup rates for a wider series of
simulations, we run a series of simulations with d = 2 and σ =

1, 1.1, 1.2, . . . , 2. In the first 10 cases (for σ < 2) the blowup
rate is fc(Tc − t)p, where the difference between p and 1

1+α
is

less than 2%, see Fig. 24. In addition, in all these simulations,
LαL t → Const 6= 0 (data not shown), showing that the blowup
rate is 1

1+α
with no loglog-type corrections. When σ = 2,

p = 0.5001 and L L t → 0, i.e. the blowup rate is slightly faster
than a square root. The jump discontinuity in the blowup rate at
σ = 2 follows from Proposition 3.
7. Super-Gaussian initial condition

In [26,36] it was observed that high-power super-
Gaussian (flat-top) initial conditions collapse with a ring
profile. In [41], Grow et al. used a geometrical optics argument
to explain why high-power super-Gaussian initial conditions
always collapse with a ring profile. Although only solutions
of the critical NLS were discussed in [41], the geometrical
optics argument is also valid for the supercritical NLS. To
see this numerically, in Fig. 25 we solve the supercritical
NLS (55) for d = 2.1 and σ = 1.1 (α ≈ 0.7438) with the
super-Gaussian initial condition ψ0(r) = 15e−r4

. As expected,
the solution evolves into a ring-like shape after very little
focusing (Fig. 25B). As the solution continues to collapse the
ring-like profile converges to the ψQ profile (Fig. 25D).

8. Stability of supercritical ring solutions — numerical
simulations

We have already tested numerically the stability of singular
ring solutions for the case α = 0, see Figs. 13 and 14, and
for the case α = 1, see Fig. 6 and [26]. In all these cases, the
ring solutions were stable with respect to radially symmetrical
perturbations, but unstable with respect to symmetry breaking
simulations.

We now show that the same also holds for 0 < α < 1. For
example, in Fig. 26 we randomly perturb the initial ring profile
from Fig. 18 (σ = 1.1, d = 2.1, α ≈ 0.74380) as in (52).
After focusing by less than two, the noise in ring region (i.e. the
area of high nonlinearity) disappears (Fig. 26B). Subsequently,
the noise at the inner and outer regions slowly decreases, until
after focusing by a factor of 50, the solution approaches a
clean ring profile. Similar results were obtained d = 3 and
σ = 1.5 (α = 1/8), data not shown. We, therefore, conclude
that the self-similar ring profile ψQ is a strong attractor as a
solution of the radially-symmetrical NLS (55) for all α such
that 0 ≤ α ≤ 1.

We now test the stability of the supercritical ring profile with
respect to symmetry breaking perturbations. As noted, this test
can only be conducted for integer values of d. To do so, we
solve the two-dimensional NLS

iψt (t, x, y)+ ψxx + ψyy + |ψ |
2σψ = 0, (87)
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Fig. 25. Top: Solution of supercritical NLS (55) for d = 2.1 and σ = 1.1 with super-Gaussian initial condition ψ0 = 15e−r4
. A: t = 0, (1/L = 1); B: t = 0.011,

(1/L = 1.33); C: t = 0.017, (1/L = 4.27); D: t = 0.013, (1/L = 37.42). Dotted curve in D is |ψQ |, both curves are indistinguishable around the peak. Bottom:
Same data as in top graphs, plotted as two-dimensional surfaces.

Fig. 26. Solution of the NLS (55) with d = 2.1, σ = 1.1 (α ≈ 0.74380) and with the noisy initial condition (52). A: t = 0, (1/L = 1); B: t = 0.14, (1/L = 2); C:
t = 0.26, (1/L = 71.73). Dotted curve in B and C is the ψQ profile, where Q is given by (77).
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Fig. 27. Solution of the NLS (87) for σ = 1.5 with slightly elliptical initial condition (88).
with σ = 1.5 (α = 1/3), with the slightly elliptical initial
condition

ψ
0,elliptic
Q = ψ0

Q(

√
1.02x2 + y2), (88)

where ψ0
Q is given by (84).

After very little focusing, two filaments emerge on the
intersection of the ring with the y-axis (see Fig. 27). Therefore,
the collapsing ring solution is unstable as a solution of the
NLS (87), i.e. with respect to perturbations that breakup the
radial symmetry.

9. Supercritical rings in the case σ > 2 — preliminary
numerical investigation

In Sections 3–6 we study supercritical ring solutions
for 2/d ≤ σ ≤ 2. We now briefly consider the case σ > 2.
In this case, the ring profile ψQ , see Eq. (63), fails to describe
ring solutions. Indeed, according to relation (72), α < 0 for
σ > 2, whereas the admissible values of α are 0 ≤ α ≤ 1
(Lemma 8). Therefore, it is natural to ask whether singular
ring solutions exist for σ > 2. To answer this question, we
solve the supercritical NLS (55) for the case of σ = 2.1
and d = 2 with the ring initial condition (49). Note that
unlike the simulations of Section 6, we could not use the initial
condition (84) since α < 0. In Fig. 28, we plot the early stages
of the collapse as the solution focuses by a factor of ≈3. The
solution seems to undergo a standing ring collapse, i.e. as the
amplitude increases, the ring radius does not go to zero, but
rather converges to a positive value. In Fig. 29 we plot the
solution as it continues to collapse by 10 orders of magnitude
and observe that the solution continues to collapse as a standing
ring solution (Fig. 29A). As in the case σ ≤ 2, the solution
collapses with a self-similar ring profile. However, the self-
similar profile does not match the Q profile (77), see Fig. 29B.
Fig. 29C and D suggest that the blowup rate is a square root,
with no loglog correction.

Additional simulations for d = 2 and σ = 2.2, 2.3, 2.4, as
well as for d = 1.1 and σ = 2.1 (data not shown) yielded the
same qualitative results. Therefore, our preliminary simulations
suggest that there exist collapsing ring solutions in the case σ >
2, and that these solutions have the following properties:

(1) Standing-ring collapse, i.e. the ring’s radius approaches a
positive constant as the solution collapses.

(2) The collapsing part of the solution has an asymptotic self-
similar ring profile

|ψ | ∼
1

L1/σ (t)
F
(

r − rm(t)
L(t)

)
.

(3) The asymptotic profile F is different from the Q
profile (77).

(4) The blowup rate is a square root with no loglog correction.

These observations suggest that σ = 2 is a critical exponent
of the supercritical NLS, in a sense that ring solutions behave
differently for the case σ < 2, σ = 2 and σ > 2. A systematic
study of the regime σ > 2 will be presented elsewhere.

10. Numerical methods

10.1. Simulations of the NLS (Iterative grid redistribution)

Since the 1980s, a highly successful method for a
simulations of collapsing (equal-rate) solutions of the NLS has
been the method of dynamic rescaling [9,24]. In this method,
the independent variables and the function are dynamically
rescaled in a way which is based on the asymptotic form (56),
i.e.

ψ(t, r) =
1

L1/σ (t)
φ (τ, ρ) , τ =

∫ t

0

ds
L2(s)

, ρ =
r
L
. (89)

As a result, φ(τ, ρ) remains smooth as L → 0, and the rescaled
problem for φ can be solved on a fixed grid (in ρ) using standard
techniques.

The dynamic rescaling method works only for equal-rate
collapsing solutions, since it is based on the asymptotic
form (56). In particular, the dynamic rescaling method cannot
be used for simulations of standing rings, since they do not
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Fig. 28. Solution of the NLS (55) with σ = 2.1 and d = 2 with ψ0 given by (49).
become singular at the origin. The dynamic rescaling method
also fails for singular rings solutions that collapse towards the
origin in the case 0 < α < 1, since these solutions do not
undergo equal-rate collapse. In addition, since the dynamic
rescaling method contracts grid points toward the singularity, it
fails when the simulation includes multiple regions of singular
behaviour, such as in multiple filamentation (e.g. see Figs. 14
and 27).

To overcome these limitations of the dynamics rescaling
method we used the iterative grid redistribution (IGR) method
for the simulations of the NLS with and without radial
symmetry. The IGR method was introduced by Ren and Wang
in [42] and further improved in [43,44]. As with dynamic
rescaling, this method allows the grid points to move towards
regions of steep gradients such that the solution remains
smooth in the transformed grid. For example, although the
solution in Fig. 30A is very close to singular, it is smooth
in the computational grid, see Fig. 30B. After the grid is
remeshed, i.e. the grid points are moved, the problem is solved
on a fixed grid using standard techniques until the solution
becomes nonsmooth again and grid is remeshed again. Unlike
dynamic rescaling, the grid points are not uniformly remeshed
according to a known asymptotic profile. Instead, the grid
points remeshing is determined from a variational principle that
makes no assumptions on the asymptotic profile of the solution.
For details, see [42–44].

10.2. Recovering L and L t from the simulation result

In general, the numerical values of L and L L t are different
from the value used in the asymptotic theory. This is because
numerically the expected phase is of the form

S = iλτ + iα
L t

4L
r2

+ i(1 − α)
L t

4L
(r − r0Lα)2,

while in the asymptotic theory we arbitrary set λ = 1. The
variables L and L t can be recovered using [45]

L =
Q(0)

ψ(ρ = 0)
L̄, L L t =

Q2(0)
ψ2(ρ = 0)

L̄ L̄ t , (90)

where the bars denote the measured value of L and L t .
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Fig. 29. Solution of Fig. 28. A: rm (t) as a function of L . B: Rescaled solution according to (51) at focusing levels 1/L = 271.07 (solid), 1/L = 2.21×106 (dashed)
and 1/L = 1.84 × 1012 (dash-dots), all three curves are indistinguishable. Dotted curve is the asymptotic profile (77). C: L as a function of (Tc − t). Dotted curve
is the fitted curve L ∼ c(Tc − t)0.49996 where c = 0.5209. D: L L t as a function of 1/L .
Fig. 30. Solution of Fig. 7 at L−1
= 3.8 × 1011. A: Physical grid. B: Computational grid.
10.3. Validation of the filamentation pattern in Figs. 14 and 27

Since the NLS (1) is isotropic, the symmetry breaking
induced by ellipticity of the initial condition, see e.g. Eq. (88),
preserves the symmetries x → −x and y → −y. Therefore,
the filamentation pattern induced by ellipticity should preserve
these two symmetries [46] as is, indeed, the case in Figs. 14
and 27. However, we still need to verify that these filamentation
patterns are due to the small ellipticity of the initial condition
and not a numerical artifact caused by the preferred directions
of the numerical Cartesian grid. To do so, we repeated the
simulation with the same initial condition after it was rotated
by 30◦. In this case, the two filaments are rotated by an angle of
≈30◦, see Fig. 31B. Therefore, we conclude that the multiple
filamentation is indeed due to the small ellipticity of the initial
condition.

Appendix A. Definition of the blowup

In this study, we use the following definition for the blowup
rate:

L(t) =
‖ψ(0, ·)‖σ∞
‖ψ(t, ·)‖σ∞

, (A.1)
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Fig. 31. A: Level sets of the solution of Fig. 27 at t = 0.286; solid curve is the y-axis. B: Same as A, with the initial condition rotated by 30◦; solid curve is 30◦

from the y-axis.
which is based on Eq. (21a). The common definition of the
blowup rate in NLS theory is, however,

Ldef(t) = ‖∇ψ‖
−1
2 . (A.2)

It is well known that (A.1) and (A.2) are equivalent, up to
a multiplicative constant, for solutions that collapse with the
standard asymptotic form (56), such as the ψR profile (8)
and the critical ring solutions ψG that undergo equal-rate
collapse (α = 1).

The following lemma shows that (A.1) and (A.2) are also
equivalent for supercritical solutions that collapse with the new
ring asymptotic profile (63):

Lemma 25. Let ψ be a singular ring solution of the NLS (55)
with an asymptotic blowup profile ψ(t, r) ∼ ψQ(t, r), where
ψQ is given by (63). Let 0 ≤ α ≤ 1. Then (A.1) and (A.2)
are equivalent, i.e., Ldef(t) ∼ cL(t) as t → Tc, where c is a
constant.

Proof. The case α = 1 is well known. We first prove the lemma
for α = 0. In this case

‖∇ψQ‖
2
2 =

∫
∞

r=0

∣∣∣∣ ∂∂r
ψ ′

Q

∣∣∣∣2 rd−1dr

= L−1−
2
σ

∫
∞

ρ=−r0 L−1

[(
∂

∂ρ
Q
)2

+
(L L t )

2

4
Q2ρ2

]
× (Lρ + r0)

d−1dρ.

By Lemma 12, σ = 2 hence −1−
2
σ

= −2. In addition, since L
is faster than or equal to a square root, i.e.

L ∼ fc
√

Tc − t, fc ≥ 0,

then L L t → −
f 2
c
2 . Therefore, as t → Tc,∫

∞

r=0
|ψ ′

Q |
2rd−1dr

= L−2
∫

∞

ρ=−∞

[
(Q′)2 +

f 4
c

16
Q2ρ2

]
rd−1

0 dρ.
Hence

Ldef(t) = c · L(t),

c =

[
rd−1

0

∫
∞

ρ=−∞

(Q′)2 +
f 4
c

16
Q2ρ2dρ

]−
1
2

.

For 0 < α < 1,

‖∇ψQ‖
2
2 = L−1−

2
σ

∫
∞

ρ=−r0 Lα−1

[
(Q′(ρ))2

+

(
2α(Lρ + r0Lα)+ 2(1 − α)Lρ

16

)2

L2
t Q2(ρ)

]
× (Lρ + r0Lα)d−1dρ.

Since α < 1, as L −→ 0,

‖∇ψQ‖
2
2 = Lα(d−1)−1−

2
σ

×

∫
∞

ρ=−∞

[
(Q′(ρ))2 +

4αr2
0 (L

αL t )
2

16
Q2(ρ)

]
rd−1

0 dρ.

By Lemma 20, α(d − 1)− 1 −
2
σ

= −2, and L is faster than or

equal to (Tc − t)
1

1+α , i.e.

L ∼ fc(Tc − t)
1

1+α , fc ≥ 0.

Hence, LαL t = −
f 1+α
c

1+α
. Therefore, as t → Tc,

‖∇ψQ‖
2
2 ≈

1
L2 rd−1

0

×

∫
∞

−∞

(
(Q′(ρ))2 +

α2r2
0 f 2(1+α)

c

4(1 + α)2
Q2(ρ)

)
dρ.

Hence

Ldef(t) = c · L(t), c =

[
rd−1

0

∫
∞

−∞

(
(Q′(ρ))2

+
α2r2

0 f 2(1+α)
c

4(1 + α)2
Q2(ρ)

)
dρ

]−
1
2

.
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Appendix B. Proof of Lemma 9

The boundary condition Q(∞) = 0 follows from the
requirement that Q has a finite power (L2 norm). Since
ψQ(r), as defined by (63) is radially symmetric in r ,
then d

dρ Q(ρ)|r=0 = 0. For α = 1, r = 0 corresponds to
ρ = −r0, see (63b). Therefore, in this case, the left boundary
condition is d

dρ Q(−r0) = 0. Otherwise, for 0 ≤ α < 1, r = 0
corresponds to ρ = −

r0
L1−α . Therefore, when L → 0, the left

boundary is at ρ = −∞ and the left boundary condition is
d

dρ Q(−∞) = 0.

Appendix C. Nonexistence of ring solutions to the R
equation

We define ring solutions as radial solutions whose global
maximum is attained at some r > 0, in contrast with peak
solutions whose global maximum is attained at r = 0.

Lemma 26. The equation

R′′(r)+
d − 1

r
R′

− R + R2σ+1
= 0,

R′(0) = 0 2/d ≤ σ, 1 < d, (C.1)

does not admit H1 ring solutions.

Proof. If R ∈ H1 then limr→∞ R(r) = 0 and either
limr→∞ R′(r) = 0 or R′(r) does not have a limit as r → ∞.

To show that limr→∞ R′(r) = 0, let us define

N (r) = (R′(r))2 − R2
+

1
1 + σ

R2+2σ .

Since

N (r)− N (0) = −2(d − 1)
∫ r

0

1
r
(R′(s))2ds,

then N (r) is monotonically decreasing in r . This implies
that N (r) has a limit, i.e.

lim
r→∞

N (r) = N∞, −∞ ≤ N∞ < ∞.

In addition, since limr→∞ R(r) = 0 , then

N∞ = lim
r→∞

N (r) = lim
r→∞

(R′(r))2 ≥ 0.

Hence, N∞ is finite and therefore limr→∞ R′(r) = 0.
Since limr→∞ R′(r) = 0, then N∞ = 0. Therefore, N (r) >

0 for any 0 ≤ r < ∞. Hence, if R′(r) = 0 then R(r) > Rc,

where Rc =
2σ√
σ + 1.

Let us now assume that there exists a maxima point at
rm > 0. Since R′(0) = R′(rm) = 0, then, by the previous
argument, both R(0) and R(rm) are above Rc. In addition, since
N (r) is monotonically decreasing in r , then N (0) > N (rm).
Since

N = (R′)2 + R2

((
R
Rc

)2σ

− 1

)
,

then, for R > Rc, N (R, R′) is monotonically increasing in R
along the line R′

= 0. Therefore,

N (R(0), R′
= 0) = N (r = 0) > N (r = rm)

= N (R(rm), R′
= 0)

implies that R(0) > R(rm).

Appendix D. Proof of Lemma 10

When ε = 0, the solution of Eq. (65) can be explicitly
calculated and is given by

Q = (1 + σ)
1

2σ sech
1
σ (σρ).

Assume that a solution to Eq. (65) exists for ε 6= 0. Let u =

Q + εu1 +O(ε2). The equation for u1 is

u′′

1(ρ)− u1 + (σ + 1)Q2σu1 + σQ2σu∗

1 = (a + bi)Q + cρQ′.

Let u1 = S + iT where S = Re(u1) and T = Im(u1). Then the
equations for S and T are

S′′(ρ)− S + (2σ + 1)Q2σ S = (RHS)S,
T ′′(ρ)− T + Q2σ T = (RHS)T ,

where

(RHS)S = aQ + cρQ′, (RHS)T = bQ.

The solvability condition for S is
∫

∞

−∞
(RHS)S Q′dρ = 0.

and for T is
∫

∞

−∞
(RHS)T Qdρ = 0, see [47]. Since Q

is an even function, (RHS)S Q′ is an odd function, hence∫
∞

−∞
(RHS)S Q′dρ = 0. Therefore, the equation for S is

solvable. The equation for T , however, is solvable only if b = 0,
since∫

∞

−∞

(RHS)T Qdρ = b
∫

∞

−∞

Q2dρ.

Appendix E. Proof of Lemma 24

We first show that when α = 1, the singular ring solutions
undergo strong collapse. Indeed, in this case,

Pε = lim
t→Tc

∫
0≤r<ε

|ψQ |
2rd−1dr

= lim
t→Tc

∫
0≤r<ε

1
L2/σ Q2

(
r − r0L

L

)
rd−1dr

= lim
t→Tc

∫
0≤Lρ+r0 L<ε

1
L2/σ Q2(ρ)(Lρ + r0L)d−1(Ldρ)

= L(d−1)+1−2/σ lim
t→Tc

∫
0≤Lρ+r0 L<ε

Q2(ρ)(ρ + r0)
d−1dρ.

Lemma 18 implies that if α = 1 then σd = 2. Hence

Pε = lim
t→Tc

∫
0≤Lρ+r0 L<ε

Q2(ρ)(ρ + r0)
d−1dρ

= lim
t→Tc

∫
−r0≤ρ<ε/L−r0

Q2(ρ)(ρ + r0)
d−1dρ

=

∫
−r0≤ρ<∞

Q2(ρ)(ρ + r0)
d−1dρ = ‖ψ0

Q‖
2
2.
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Hence

Pcollapse = inf
ε

Pε = ‖ψ0
Q‖

2
2.

We now show that when 0 < α < 1 the new singular ring
solutions also undergo strong collapse. Indeed

Pε = lim
t→Tc

∫
0≤r<ε

|ψQ |
2rd−1dr

= lim
t→Tc

∫
0≤r<ε

1
L2/σ Q2

(
r − r0Lα

L

)
rd−1dr

= lim
t→Tc

∫
0≤Lρ+r0 Lα<ε

1
L2/σ Q2(ρ)(Lρ + r0Lα)d−1(Ldρ).

Since 0 < α < 1 and limt→Tc L(t) = 0,

(Lρ + r0Lα)d−1
≈ rd−1

0 Lα(d−1), t → Tc.

Hence, using relation (72),

Pε = rd−1
0 lim

t→Tc

∫ 1
L (ε−r0 Lα)

ρ=−r0 Lα−1
Q2(ρ)Lα(d−1)+1−2/σdρ

= rd−1
0

∫
∞

−∞

Q2dρ.

Therefore,

Pcollapse = inf
ε

Pε = rd−1
0

∫
∞

−∞

Q2dρ. (E.1)

Appendix F. Admissible values of α — power conservation
violation for α < 0

Let us assume that ψQ exists. Then the power of ψQ is∫
|ψQ |

2
= L−2/σ

∫
∞

0
Q2
(

r − r0Lα

L

)
rd−1dr

≈ L−2/σ
∫

∞

−∞

Q2 (ρ) (Lρ + r0Lα)d−1(Ldρ)

≈ Lα(d−1)+ σ−2
σ

∫
∞

−∞

Q2(ρ)dρ.

Since σ ≤ 2, 1 < d and α < 0, then

α(d − 1)+
σ − 2
σ

< 0.

Therefore,

lim
L→0

∫
|ψQ |

2
= ∞,

which is in contradiction with power conservation.
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