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Abstract: We investigate experimentally the role that the initial temporal
profile of ultrashort laser pulses has on the self-focusing dynamics in
the anomalous group-velocity dispersion (GVD) regime. We observe that
pulse-splitting occurs for super-Gaussian pulses, but not for Gaussian
pulses. The splitting does not occur for either pulse shapes when the GVD is
near-zero. These observations agree with predictions based on the nonlinear
Schrödinger equation, and can be understood intuitively using the method
of nonlinear geometrical optics.
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With the advent of ultrashort lasers, the study of high intensity light interactions with matter
became possible. A high-power laser pulse will experience an intensity-dependent refractive
index, which can result in self-focusing if the power P of a laser pulse is greater than a certain
critical power Pcr. Although much of the initial work dealt with spatial effects, the dynamics
of spatio-temporal wave collapse has generated significant interest [1–3] and includes a broad
range of phenomena including pulse compression, pulse-splitting, supercontinuum generation,
harmonic generation, plasma formation, and filamentation [4, 5]. One of the fundamental dy-
namical effects that arises from the interplay of nonlinearity and normal group-velocity disper-
sion (GVD) is pulse-splitting [2,3,6,7], which was demonstrated experimentally [8–13]. In the
anomalous-GVD regime, temporal dynamics during beam collapse has not been extensively ex-
plored [14–16], and it was generally believed that the pusle should exhibit full spatio-temporal
collapse.

Recent investigations of the spatial dynamics of a collapsing super-Gaussian beam show a
behavior distinct from that for a Gaussian beam. Theory predicts that as the beam self-focuses
the transverse profile evolves initially to a ring solution [17, 18], which was confirmed experi-
mentally [19]. These results provided compelling evidence for the role of the initial beam shape
on the spatial collapse dynamics, and motivated the development of the nonlinear geometrical
optics (NGO) method for analyzing beam collapse without the need for full integration of the
3-D nonlinear Schödinger equation [18]. Two key NGO predictions are that the initial temporal
dynamics in the anomalous-GVD regime is decoupled from the spatial dynamics and that it
should depend on the temporal pulse shape in a manner entirely analogous to that exhibited in
the spatial regime.

In this work we confirm these predictions experimentally, by propagating ultrashort pulses
in the anomalous-GVD regime in a fused-silica sample at powers several times Pcr. We observe
that temporal super-Gaussian input pulses undergo pulse-splitting, whereas Gaussian ones do
not. To the best of our knowledge, no previous experimental work has shown that the temporal
dynamics depend on whether or not the input pulse is temporally flat-top. We also find that no
pulse-splitting occurs at the zero-GVD regime, regardless of the initial pulse shape.

We simulate pulse propagation using the nonlinear Schrödinger equation (NLSE) with dis-
persion for the slowly-varying envelope A(η ,ξ ,τ) centered at frequency ω ,
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where w0 is the spot size, Ld f = kw2
0/2 is the diffraction length, Lnl = (n2n0ω|A0|2/2π)−1 is

the nonlinear length, |A0| is the magnitude of the input laser field, η = x/w0 and ξ = y/w0 are
the normalized coordinates, ζ = z/Ld f is the normalized propagation length, τp is the tempo-
ral pulse width, Lds = τ2

p/|β2| is the dispersion length, τ = [t − (z/vg)]/τp is the normalized
retarded time for the pulse traveling at the group velocity vg. Figure 1 shows simulations of
the NLSE (1). All simulations have a Gaussian spatial profile exp(−r2) as the input, while the



120

0

0
0

0.4

-0.4
0.5

-0.5

Time [A.U.] Radius [A.U.]

In
te

n
s
it
y
 [
A

.U
.]

0
0

0.4

-0.4
0.5

-0.5

Time [A.U.] Radius [A.U.]

In
te

n
s
it
y
 [
A

.U
.]

0
0

0.4

-0.4
0.5

-0.5

Time [A.U.] Radius [A.U.]

In
te

n
s
it
y
 [
A

.U
.]

0
0

0.4

-0.4
0.5

-0.5

Time [A.U.] Radius [A.U.]

In
te

n
s
it
y
 [
A

.U
.]

200

0

250

0

150

0

(a) (b)

(d)(c)

Fig. 1. Comparison of simulation results for Gaussian temporal profile (top) and super-
Gaussian temporal profile (bottom), for input power of 2Pcr [(a) and (c)], 3Pcr [(b) and (d)],
wavelength of 1550 nm, and β2 of -279 fs2/cm. The input spatial profiles for all simulations
are Gaussian. The spatio-temporal profiles are taken from the propagation point at which
the beam is collapsing and before the intensity becomes sufficiently high that higher order
effects change the dynamics.

temporal profile is varied. The value of Ld f /Lds for all simulations is 0.04. Two cases of the
collapse of a Gaussian pulse exp(−t2) are shown in the top part of the figure. Fig. 1(a) is 2Pcr
and Fig. 1(b) is 3Pcr. Overall the temporal dynamics result in 3-D collapse as predicted by
previous work. However, for a super-Gaussian temporal profile exp(−t4), the pulse undergoes
splitting, as shown in Fig. 1(c) for 2Pcr and Fig. 1(d) for 3Pcr. In the spatial domain all input
profiles are a Guassian, and therefore they evolve into a peak-type profile.

The pulses dynamics can be explained intuitively by the NGO method [18], which approx-
imates the initial self-focusing dynamics with a reduced system of linear ordinary differential
equations. These equations show that initially, the spatial and temporal dynamics are decou-
pled. The temporal dynamics in the anomalous-GVD regime is governed by the NGO eikonal
equation for the ray trajectories,

dT (z)
dz

= 2z
d

dT
|ψ0(T )|2, (2)

and by the NGO transport equation for amplitude evolution along the rays,

dC(z)
dz

=−C[T (z)]z
d2

dT 2 |ψ0(T )|2, (3)

where T is the temporal coordinate of the ray at the propagation distance z, ψ0 is the input
field and C is the z-dependent amplitude. Equations (2,3) show that for a high-power temporal
profile of the form exp(−t2m), the pulse will undergo splitting if m> 1, but will focus to a single
peak if m = 1 [18], as is confirmed in direct numerical simulations of the NLSE, see Figure
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Fig. 2. Comparison of simulation results for a super-Gaussian temporal profile. The top (a)
is the on-axis temporal profile found by directly integrating the NLSE in the anomalous (a)
with input power 3Pcr , wavelength of 1550 nm, and β2 of -279 fs2/cm. The bottom (b) is
found using the 1-D building block of the NGO method. Although the profiles are slightly
diffrerent, the peaks of the split pulses occur at ±0.2 for both direct integration and the
NGO method.

1. Comparison of the on-axis temporal profile for m = 2 (temporal super-Gaussian), shows a
remarkable agreement between the solutions of the NLSE (1) and of the NGO equations (2,3),
see Figure 3. Note that the peaks of the split pulses are at the same temporal position τ = ±0.2.

We performed experiments to investigate these predictions with an amplified Ti:sapphire
laser system operating at 800 nm, which generates 1.6-mJ, 70-fs pulses at a 1-kHz repetition
rate. The output of the amplified system pumps an optical parametric amplifier to produce 150-
µJ pulses at 1510 nm or 125-µJ pulses at 1275 nm. These two wavelengths are chosen since
they correspond to the anomalous-GVD and the zero-GVD regimes, respectively, for the fused-
silica sample. We spatially filter the output and temporally shape the pulse using a standard
4-f pulse shaper [20] with a 1-D double-mask liquid-crystal spatial light modulator to tailor the
amplitude and phase of the spectrum. The output of the pulse shaper has pulse durations of 200-
fs and 160-fs at 1510 nm and 1275 nm, respectively. We focus the outputs of the pulse shaper
onto the front face of the sample, with spot sizes of 245 µm and 185 µm for 1510 nm and for
1275 nm, respectively. We use a 30-mm fused-silica sample, for which the physical parameters
are as follows: at 1510 nm β2 = -279 fs2/cm and n2 = 2.2×10−16 cm2/W, and at 1275 nm β2
= 1 fs2/cm and n2 = 2.5×10−16 cm2/W [15]. Upon propagation through the sample, we use a
two-photon autocorrelator [21] and an optical spectrum analyzer as diagnostics.

The autocorrelation of the pulse for various powers after propagation through the 30-mm
fused-silica sample is shown in Figure 3. The traces in Fig. 3(a) are the autocorrelations for
a temporal Gaussian input profile through the sample. The energy increases from the bottom
to the top trace. As the energy is increased, there is no indication of any pulse-splitting. The
traces in Fig. 3(b) are the autocorrelations for a temporal super-Gaussian input through the
sample. They exhibit pulse splitting at the lowest peak power as evidenced by the appearance
of shoulders on the autocorrelation trace, and as the energy is increased the pulse-splitting
becomes more pronounced. These observations are consistent with our theoretical predictions.

As a comparison, we also perform the analogous experiment with pulses at 1275 nm, at
which point the GVD is nearly zero (i.e., β2 = 1 fs2/cm). As expected, we do not observe pulse-
splitting at this wavelength for either a Gaussian pulse [Fig. 4(a)] or for a super-Gaussian pulse
[Fig. 4(b)] for the range of powers studied, which indicats that the pulse-splitting of super-
Gaussian pulses should only occur in the anomalous-GVD regime, as predicted.
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Fig. 3. Autocorrelation traces after propagation through 30 mm of fused silica at a wave-
length of 1510 nm. The top plot (a) is for a temporal Gaussian input profile with peak
power increasing from bottom to top (P = 15.7 MW, 24.7 MW, 33.7 MW, 41.5 MW, 49.4
MW, 62.8 MW). The lower plot (b) is for a temporal super-Gaussian input profile with
peak power increasing from bottom to top (P = 11.2 MW, 14.6 MW, 18.0 MW, 21.8 MW,
26.9 MW). For the super-Gaussian case the pulse-splitting is pronounced as the power is
increased.
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Fig. 4. Pulse autocorrelation traces after propagation through 30-mm of fused-silica at
wavelength of 1275 nm. The top plot (a) is for a temporal Gaussian input profile with
power increasing from bottom to top (P = 33.8 MW, 50.7 MW, 67.6 MW, 84.5 MW). The
lower plot (b) is for a temporal super-Gaussian input profile with power increasing from
bottom to top (P = 19.7 MW, 29.6 MW, 45.1 MW). Pulse-splitting does not occur in either
case.

In conclusion, we show that the spatio-temporal dynamics strongly depends on the temporal
profile of the pulse. We observe that pulse-splitting can occur in the anomalous-GVD regime
for the case of super-Gaussian input pulses, which confirms recent theoretical predictions. This
splitting can be interpreted as a temporal focusing of the energy in the beam due to strong self-
phase modulation, and is analogous to the spatial focusing of the beam to a ring profile for a
super-Gaussian spatial profile [17–19]. These results are relevant to understanding how shaping
the temporal profile of the initial pulse can dramatically change the temporal dynamics and the
filamentation and plasma formation process. Finally, we note that this splitting is very different
from the one in the normal-GVD regime. Indeed, in the normal GVD regime, both Gaussian and
super-Gaussian pulses undergo a temporal splitting. Moreover, this temporal splitting strongly



depends on the spatial dynamics, since it only occurs after the pulse undergoes a significant
spatial self-focusing, and it is associated with a departure from a self-similar Townes spatial
profile [7].
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