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Abstract

We present numerical simulations of a new type of singular solutions of the critical nonlinear Schrödinger equation (NLS),
that collapse with a quasi self-similar ring profile at a square root blowup rate. We find and analyze the equation of the ring
profile. We observe that the self-similar ring profile is an attractor for a large class of radially-symmetric initial conditions, but
is unstable under symmetry-breaking perturbations. The equation for the ring profile admits also multi-ring solutions that give
rise to collapsing self-similar multi-ring solutions, but these solutions are unstable even in the radially-symmetric case, and
eventually collapse with a single ring profile. Collapsing ring solutions are also observed in the supercritical NLS.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The focusing critical nonlinear Schrödinger equation (NLS)

iψt(t, x, y) +�ψ + |ψ|2ψ = 0, ψ(0, x, y) = ψ0(x, y), (1)

is one of the canonical nonlinear equations in physics, arising in various fields such as nonlinear optics, plasma
physics, Bose–Einstein condensates (BEC), and surface waves. In nonlinear optics it models the propagation of
intense laser beams in a Kerr medium. In this case,t is the axial coordinate in the direction of propagation,x and
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y are the spatial coordinates in the transverse plane,∆ = ∂xx + ∂yy is the diffraction term and|ψ|2ψ describes the
nonlinear Kerr response of the medium.

We now briefly review NLS theory, for more information, see[1–3]. The NLS(1)has two important conservation
laws:power (L2 norm) conservation,

N(t) =
∫

|ψ|2 dx dy ≡ N(0), (2)

and Hamiltonian conservation,

H(t) =
∫

|∇ψ|2 dx dy − 1

2

∫
|ψ|4 dx dy ≡ H(0). (3)

It is well known that solutions of the two-dimensional critical NLS(1) can self-focus and become singular at a
finite timeTc. A necessary condition for blowup is that theinitial power N(0) exceeds a threshold powerNc, i.e.,
N(0) ≥ Nc. A sufficient condition for collapse is that the initial Hamiltonian is negative, i.e.,H(0)< 0.

The two-dimensional NLS(1) has waveguide solutions of the formψ = eitR(r), whereR is the solution of

R′′(r) + 1

r
R′ − R+ R3 = 0, R′(0) = 0, R(∞) = 0. (4)

Eq.(4) has enumerable number of solutions{R(n)}∞n=0, which can be arranged in order of increasing power[4], i.e.,

∫
(R(0))2 dx dy ≤

∫
(R(1))2 dx dy ≤

∫
(R(2))2 dx dy ≤ · · ·

Of most importance is the ground state solutionR := R(0), also known asTownes profile [5]. The ground stateR
is positive and monotonically decreasing. In addition, its power is exactly equal to the critical powerNc, i.e.,Nc =∫
R2 dx dy ≈ 11.7 [6].
The critical NLS(1) is invariant under the lens (pseudo-conformal) transformation, i.e., ifψ is a solution of the

NLS (1) then

ψ̃ = 1

L(t)
ψ(τ, ξ) exp

(
i
Lt

L

r2

4

)
, r =

√
x2 + y2, ξ = r

L(t)
, τ =

∫ t

0

ds

L2(s)
, (5)

whereL(t) = α2(Tc − t), is also a solution of the NLS(1) [7]. Applying the lens transformation(5) to the waveguide
solutionsψ = eitR(r) gives rise to the explicit blowup solutions

ψex
R(n) (t, r) = 1

L(t)
R(n)

(
r

L(t)

)
eiτ+i(Lt/L)(r2/4), τ =

∫ t

0

ds

L2(s)
, L(t) = α2(Tc − t), (6)

whereR(n) are the solutions of(4), that become singular att = Tc. These explicit blowup solutions, however, are
unstable.

Two related questions which were open from the mid 1960s up to the mid 1980s, were the profile of the solution
near the collapse and the rate of blowup. Numerical studies conducted during the 1980s[8,9], suggested that the
NLS has a universal, cylindrically-symmetric asymptotic blowup profile

ψ ∼ ψR = 1

L(t)
R

(
r

L(t)

)
eiτ+i(Lt/L)(r2/4), τ =

∫ t

0

ds

L2(s)
, (7)

whereR is the ground-state solution of(4). More precisely, it turned out that only the inner core of the solution
collapses into the singularity with the asymptotic profileψR ast → Tc, while the rest of the solution continues to
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propagate (see, e.g.,Fig. 5), i.e.,

ψ ∼
{
ψR 0 ≤ r ≤ ρL(t)

ψouter ρL(t) < r
(8)

whereρ � 1 andL(t) = 1/maxx,y |ψ(t, x, y)|. The understanding that NLS collapse is quasi self-similar with
asymptotic profileψR was crucial in the asymptotic calculation of the blowup rateL(t), which turned out to be
given by theloglog law [10–12]

L(t) ∼
(

2π(Tc − t)

log log 1/(Tc − t)

)1/2

, (9)

whereTc is the singularity point. Finding theloglog law was a hard problem, exactly because the solution undergoes
partial beam collapse, in which the inner core evolves according toψR, the outer part propagates linearly, and the
dynamics depends on the exponentially weak coupling between the two.

Numerical simulations also showed thatψR is an attractor for the inner part of solutions of the weakly perturbed
critical NLS. This property was used in the development of an asymptotic theory for the effects of small perturbations
in the critical NLS, known asmodulation theory [1]. Thus, the convergence toψR turned out to be a key feature of
the critical NLS. A rigorous proof of the convergence to the self-similar Townes profileψR, however, turned out
to be a hard problem. Weinstein proved that near the singularity the solution converges to a self-similar blowup
profile [13]. Nawa further characterized the limiting profiles of the collapsing core and of the diffracting outer
part [14,15]. These results partially supported the observation that the NLS has the universal asymptotic blowup
profileψR, but did not prove it. Only recently, Merle and Raphael proved that solutions of the NLS(1) with power
moderately aboveNc collapse with the asymptotic profileψR at the loglog blowup rate[16–18]. Concurrently, it
was demonstrated experimentally that the profile of collapsing laser beams is given by the Townes profile[19].
Thus, all the research that was carried out from the eighties until these days leads to the belief that the Townes
profile is the only attractor of blowup solutions of the critical NLS.

In a recent paper, Bergé et al. presented simulations of the critical NLS with super-Gaussian initial conditions that
self-focused with a ring profile[20]. These simulations were only carried out for focusing levels of 3–5, probably
because the focus of that paper was on symmetry-breaking (multiple filamentation). In this research, we study such
ring-type solutions as they continue to collapse. Specifically, we are interested to know whether the ring structure
will persist until the singularity, or whether the solution will eventually collapse with the Townes profile.

The paper is organized as follows. In Section2 we solve the NLS with high-power super-Gaussian initial
conditions and observe numerically that the solution collapses with a quasi self-similar ring profile at a square-root
blowup rate up to focusing levels of 1016. In particular, the solution does not change into the Townes profile, nor
does it blowup with the loglog blowup rate(9). In Section3 we find the equation of the ring profile, denoted as
theG equation. Section4 is devoted to analysis of theG equation. We present one-parameter families of ring and
multi-ring solutions of theG equation. We then use these solutions to construct explicit self-similar ring solutions
of the NLS that blowup at a square root blowup rate. In Section5 we show numerically that the self-similar
profiles of the collapsing ring solutions of the NLS have an excellent match with the single-ring solutions of the
G equation. As in the case of theR profile, see Eq.(8), the NLS ring solutions match theG profile only in the
“ring region”, and not everywhere (i.e., quasi self-similar collapse). In Section6, we test the stability of the ring
profiles and show numerically that the self-similar ring profile is a strong attractor in the radially-symmetric case,
but not under symmetry breaking perturbations. We also observe that multi-ring solutions are unstable even in
the radially-symmetric case. Section7 shows that the super-critical NLS also admits collapsing ring solutions, but
that they are quite different from the critical NLS ring solutions. In Section8 we discuss the open question of the
existence ofH1 ring-type blowup solutions of the critical NLS. Final remarks are given in Section9. The numerical
methods used in this study are described in theAppendices A–F.
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Fig. 1. Solution of the NLS(10) with ψ0 = 15 e−r4. (A) t = 0, A(t) = 1; (B) t = 0.020, A(t) = 1; (C) t = 0.027, A(t) = 1; (D) t =
0.0286, A(t) = 1; (E)t = 0.02875793896630, A(t) = 3.32× 105; (F)A(t) = 6.64× 105; (G)A(t) = 4.6 × 1010; (H)A(t) = 6.5 × 1015. Times
t in graph E–H differ only in the 14th digit or after, therefore only the focusing levelsA(t) are presented.

2. Preliminary numerical observations

We first ask what happens to ring solutions as they get closer and closer to the singularity (i.e., as they become
more and more focused). Specifically, do they maintain a ring profile or does the blowup profile becomes Townesian
at a certain stage? To see that, we first solve the radially-symmetric NLS

iψt(t, r) + ψrr + 1

r
ψr + |ψ|2ψ = 0, ψ(0, r) = ψ0(r), (10)

with the high-power super-Gaussian initial conditionψ0 = 15 e−r4(N(0) � 38Nc). In order to be able to get closer
and closer to the singularity we use the method ofdynamic rescaling (seeAppendix E). As can be seen inFig. 1, the
solution collapses with a ring profile that becomes taller in amplitude and smaller in radius, up to focusing levels
of A(t) = O(1015), where

A(t) = maxr |ψ(t, r)|
maxr |ψ(0, r)| . (11)

In addition,Fig. 1E–H suggest that the ring solution is self-similar, i.e., of the form

|ψ(t, r)| ∼ 1

L(t)
G(ξ), ξ = r

L(t)
, (12)

for some profileG(ξ). In order to check for self-similarity, we rescale the numerical solution according to1

ψnormalized(t, r) = L(t)ψ

(
r

L(t)

)
, L(t) = 1

maxr |ψ| . (13)

Fig. 2A shows the results ofFig. 1E–H, rescaled according to(13). All four normalized plots are indistinguishable,
indicating that the collapsing ring solution is indeed self-similar while focusing over more than 10 orders of

1 Note that under the normalization(13), maxr |ψnormalized| = 1.
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Fig. 2. (A) Results ofFig. 1E–H normalized and superimposed:A(t) = 3.32× 105 (solid),A(t) = 6.64× 105 (dashes),A(t) = 4.6 × 1010 (dots)
andA(t) = 6.5 × 1015 (dash-dots); all four lines are indistinguishable. (B) Same data on a semi-logarithmic scale.

Fig. 3. Solution of the NLS(10) with ψ0 = 20 e−r4 at t = 0.020793557 (A(t) = 1.12× 103; solid) and att = 0.020793558 (A(t) = 1.75×
105; dots); the two lines are indistinguishable.

magnitude. Plotting the same data on a semi-logarithmic scale (Fig. 2B) shows that the rescaled profile is only quasi
self-similar: it is self-similar in the “ring region”, but not near the center (r/L  10) or far outside (r/L � 10).

We now increase the input power and solve the NLS(10) with ψ0 = 20 e−r4 (N(0) � 67Nc). In this case the
solution also collapses with a self-similar ring profile (Fig. 3). The radius of the rescaled ring inFig. 3isξmax ∼= 20.2,
which is larger than inFig. 2 whereξmax ∼= 14.1. More generally, we observe that the ring radius increases with
the input power. Since different initial conditions collapse with ring structures with different radii, the ring profile
appears not to be universal (but see Section4.2).

In order to show that initial conditions that are different fromψ0 = c e−r4 can also collapse with a self-similar ring
profile, we show inFig. 4 that the initial conditionψ0 = 15 e−r8 (N(0) � 43Nc) also collapses with a self-similar
ring profile.2 Clearly, not all high-power (i.e.,N(0) = O(50Nc)) initial conditions collapse with a ring profile. For
example, the Gaussian initial condition whose input power is the same as the super-Gaussianψ0 = 15 e−r4 from
Fig. 1, collapses with a Townes profile (seeFig. 5).

We now consider the blowup rate of these ring solutions. Since the solutions were found to be self-similar as
in (12), their blowup rate is given byL(t). PlottingL2 as a function oft looks like a straight line, suggesting an
asymptotic square root blowup rate. However, it is hard to determine from such plots whether the blowup rate is
strictly a square root or a square root with a small (e.g.,loglog) correction. A better numerical approach is, therefore,

2 In Section6 we show non-monotonic initial conditions that also collapse with a self-similar ring solution.
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Fig. 4. Solution of the NLS(10) with ψ0 = 15 e−r8, at t = 0.0302387873 (A(t) = 6.625× 103; solid) and att = 0.0302387878 (A(t) =
2.67× 104; dots); the two lines are indistinguishable.

Fig. 5. Solution of the NLS(10)with ψ0 = 15 4
√
π/2 e−r2 at t = 0.0172 (solid). Dotted line is the Townes-based asymptotic profileψR.

to monitor the dynamics ofLLt = (1/2)(L2)t , since limt→Tc LLt = −α2/2< 0 in the case of a strict square root
blowup rateL(t) ∼ α

√
Tc − t, whereas limt→Tc LLt = 0 when the blowup rate is faster than a square root.Fig.

6A shows that limt→Tc LLt
∼= 0.085 for the super-Gaussian initial conditionψ0 = 15 e−r4, suggesting a square

root blowup rate ofL(t) ∼ α
√
Tc − t with α ∼= 0.41. Note that this is different from the equal-power Gaussian

initial condition fromFig. 5, for which limt→Tc LLt = 0 (seeFig. 6B), which implies a faster-than-a-square-root
blowup rate. Therefore, it seems that monitoringLLt is, indeed, a good way to tell numerically a square root from
a faster-than-a-square-root blowup rate.

3. Finding the ring profile G(ξ)

The preliminary numerical observations in Section2 suggest the existence of NLS solutions that collapse with a
self-similar ring-profile G at a square-root blowup rate. We now turn our attention to the following question: Which
equation describes the ring profile(s)3 observed inFigs. 2–4? Clearly,G cannot be any of the infinite number of
solutionsR(n) of Eq.(4), because all these solutions have a global maximum atr = 0. Likewise, it cannot be any of

3 We say profiles and not profile, since they can have different radii.
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Fig. 6. LLt as a function ofA(t) for solutions of the NLS(10)with initial conditions: (A)ψ0 = 15 e−r4 and (B)ψ0 = 15 4
√
π/2 e−r2.

the multibump solutions found by Budd[21], since these solutions exist only in the case of the supercritical NLS,
(i.e., Eq.(32) for d > 2), and even in that case they were found to be numerically unstable.

The following proposition characterizes all singular solutions that undergo self-similar collapse at a square root
blowup rate:4

Proposition 1. Let ψ be a singular solution of the NLS (1) with an asymptotic self-similar blowup profile ψ(t, r) ∼
ψG(t, r) where

ψG(t, r) = 1

L(t)
G(ξ) eiτ+i(Lt/L)(r2/4), τ =

∫ t

0

ds

L2(s)
, ξ = r

L(t)
, (14)

and G(ξ) : R→ R. If ψ has a square root blowup rate, i.e., if

lim
t→Tc

L(t)√
Tc − t

= lim
t→Tc

d(L(t))/dt

d(
√
Tc − t)/dt

= α > 0, (15)

then G(ξ) is the solution of

G′′(ξ) + G′

ξ
+

[
α4

16
ξ2 − 1

]
G+G3 = 0, 0 �= G(0) ∈ R, G′(0) = 0. (16)

Proof. Substitution of(14) in the NLS(1) shows that the equation forG is

G′′(ξ) + G′

ξ
−G+G3 + 1

4
β(t)ξ2G = 0, β(t) = −LttL3. (17)

SinceG(ξ) is independent oft, β(t) ≡ β0 := β(0). Hence, the equation forL(t) is

Ltt = − β0

L3 .

Multiplying this equation byLt and integrating gives,

(LLt)
2 = β0 + C0L

2, C0 = L2
t (0) − β0

L2(0)
.

4 A “modified” version ofProposition 1for quasi self-similar collapse is given in Section8.
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Therefore, since limt→Tc L(t) = 0,

lim
t→Tc

(LLt)
2 = β0 + lim

t→Tc
C0L

2 = β0. (18)

When the blowup rate is a square root, it follows from(15) that

lim
t→Tc

LLt = −α
2

2
. (19)

Therefore, by(18) and (19),

β0 = α4

4
. (20)

Substituting(20) into (17)gives(16). �

We, therefore, see that the profile of self-similar solutions that blowup at a square root rate is given by theG
Eq. (16), and not by theR Eq. (4). In Section4 we will show that solutions of Eq.(16) can, indeed, give rise to
ring solutions and in Section5.2we will show that theG-profiles provide an excellent match to the ring solutions
observed in the simulations of Section2.

Remark 2. Eq. (16) is not new. In fact, it frequently arises in the analysis of blow-up solutions of the NLS. Until
now, however, this equation was analyzed by assuming that to leading order, this equation reduces to theR-profile
(4). Therefore, it was assumed thatG(0) = R(0) +O(α4) = O(1). In contrast, in this study we are interested in
solutions of Eq.(16)with G(0)  1 that give rise to ring solutions.5

It is generally hard in NLS simulations to characterize the small derivation (if any) from a square root blowup rate,
even in simulations where the solution focuses by 1015. As we have seen inFig. 6, monitoring the dynamics ofLLt
seems to provide a good way to distinguish between a strict square root blowup rate and a faster-than-a-square-root
blowup rate. AlthoughFig. 6provides a strong numerical support that the ring self-similar solution collapses with
a square root blowup rate, the numerical data cannot determine in a conclusive manner whether the blowup rate is
exactly a square root. Therefore, we ask whether is it possible that NLS solutions with a self-similar ring profile
collapse at a different blowup rate. Since the blowup rate has the rigorous boundL(t) ≤ M

√
Tc − t whereM is a

constant[22,23], we need to consider only the case where the blowup rate is faster than a square root, i.e., when
lim t→Tc LLt = 0 (see Section2). This is done in the following proposition:

Proposition 3. Letψ be a solution of the NLS (1) with an asymptotic self-similar blowup profile (14). If the blowup
rate of ψ is faster than a square root, i.e., if

lim
t→Tc

LLt = 0, (21)

then,G(ξ) is the solution of the R Eq.(4).

Proof. From(18) and (21), it follows thatβ0 = 0. Substituting this results in(17)gives theR Eq.(4). �

Remark 4. Proposition 3applies to the case of loglog blowup rate(9), as well as to the linear blowup rate
L(t) = α(Tc − t) of the explicit blowup solutionsψ(n)

ex of (6).

5 Indeed, sinceG′′(0) = G(0)(1−G2(0))/2, G is increasing atξ = 0 if and only ifG(0)< 1.
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Fig. 7. Solutions of Eq.(16)with G0 = 5 × 10−4 for several values ofα.

4. Ring solutions of the G equation

Solutions of theG Eq.(16)depend on the parameterα and on the initial conditionG0 = G(ξ = 0). Let us recall
Theorem 1.1 of[24] of Johnson and Pan, applied here to Eq.(16):

Lemma 5. All solutions of the initial value problem (16) are decaying as ξ → ∞. Moreover,

G(ξ) = cG

ξ
cos

(
α2

8
ξ2 − 2

α2 logξ + c2

)
+O

(
1

ξ2

)
, (22)

where cG and c2 are constants that depend on G0 and on α.

Lemma 5ensures that for anyG0 (and for anyα) the solution decays asξ → ∞. This is different from the case of
theR Eq.(4), where decaying solutions exist only for enumerable set of values ofR(0), see[4].

4.1. Families of n-ring profiles

As we have mentioned, we are interested in solutions of Eq.(16)withG0  1 that give rise to ring-type solutions.
Fig. 7shows solutions of Eq.(16) with G0 = 5 × 10−4 for various values ofα. In general, these solutions can be
separated into two regions:

(1) A ring region for 0≤ ξ ≤ O(1/α2), in whichG is positive with one or several rings.
(2) A tail of decaying-to-zero oscillations forξ � 1/α2 (seeLemma 5).

Clearly, we are interested in solutions of theG equation that look as inFigs. 2–4and not as inFig. 7, i.e., without the
oscillatory tail. Since the amplitude of the decaying oscillations is governed bycG, see Eq.(22), we can equivalently
say that we are interested in ring solutions of Eq.(16) with the smallest-possible tail (i.e.,cG).6 Therefore, for a
givenG0, we can define the single-ring profile of Eq.(16)as the single-ring solution with the value ofα that gives
rise to the smallest-possiblecG. More generally, then-ring profile is then-ring solution with the minimalcG.7 Fig. 8
shows a graph ofcG as a function ofα for G0 = 5 × 10−4 (seeAppendix Bfor numerical methods to calculate
cG). In generalcG isO(10), but it sharply falls into minimum points at several locations. Let us denote the values
of α at the minimum points by, going from left to right,α(1), α(2), α(3), . . .. Plotting the correspondingG-profiles
shows thatα = α(n) corresponds to ann-ring profile (seeFig. 9). The sharp variation ofcG near the minima points
in Fig. 8 indicates that slight perturbations in the value ofα from α(n) result in solutions which are very different

6 See also discussion in Section9.
7 The minimum value ofcG is close to, but not equal to, zero (seeFig. 8). Indeed, fromLemma 5it follows that if cG = 0 thenG ≡ 0.

Therefore, ann-ring solution of(16)does have an oscillating tail, but its magnitude is minimal.
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Fig. 8. Graph ofcG as a function ofα for G0 = 5 × 10−4.

Fig. 9. Solutions of Eq.(16)with G0 = 5 × 10−4 and (A)α = α(3)(G0) ∼= 0.0335, (B)α = α(2)(G0) ∼= 0.37 and (C)α = α(1)(G0) ∼= 0.424.

from ring profiles (seeFig. 10). More generally, values ofα betweenαn < α < αn+1 give rise ton-ring solutions
with “large” oscillating tails (as in, e.g.,Fig. 7).

Let us denote byα(n)(G0) the value ofα for which the solution of Eq.(16)with the initial conditionG(0) = G0
is an n-ring profile, according to the above definition of ring profiles, i.e.,α(n)(G0) is a minimum point of the
graphcG(α). By repeating the above process for other values ofG0 (namely calculatingcG as a function of
α and finding the minimum pointsα(n), seeAppendix B for more details), we can obtain curvesα = α(n)(G0)

Fig. 10. Solutions of Eq.(16)with G0 = 5 × 10−4 anda = α(1) (solid),α = α(1) + 0.01 (dotted) andα = α(1) − 0.01 (dashed).
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Fig. 11. The curvesα(n)(G0) that corresponds ton-ring profile solutions of Eq.(16).

that describe families ofn-ring profiles (seeFig. 11). As we have pointed out earlier, values ofα between the
curvesα(n)(G0) < α < α(n+1)(G0), correspond ton-ring solutions with a non-small oscillating tail.

Remark 6. As we have just seen, in the case of ring solutions of the critical NLS,α can assume a continuous range
of values. In contrast,α has to be equal to zero in the case of Townesian blowup solution of the critical NLS, and
in the case of the super-critical NLS the value ofα can assume a single value (e.g.,α ∼= 0.9177 whend = 3 in Eq.
(32)) [9].

4.2. “Universality” of the G-profile

In Section2 we concluded that theG-profile is not universal since different initial condition evolve into rings of
different radii.

In Section4 we have also seen that the value ofα is also not universal.
We now consider the behavior of theG-profile around its peak(s):

Lemma 7. Let G be a solution of Eq.(16) and let ξmax be a local maximum point of G such that

1  ξmax ≤ 4

α2 . (23)

Then for |ξ − ξmax| = O(1),

G(ξ) ∼ ν sech

(
ν
ξ − ξmax√

2

)
, ν2 = 2 − α4

8
ξ2

max. (24)

Proof. SinceG′(ξmax) = 0 andξ � 1, the termG′(ξ)/ξ can be neglected. In addition, sinceξ � 1 and|ξ − ξmax| =
O(1), it follows thatξ2 = ξ2

max(1 + o(1)). Hence, to leading order Eq.(16) reduces to

G′′(ξ) +
[
α4

16
ξ2

max − 1

]
G+G3 = 0, G′(ξmax) = 0, (25)

whose solution is given by(24). �
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Fig. 12. (A) Single ringG-profiles withG0 = 5 × 10−4 andα = α(1) ∼= 0.424 (solid) and withG0 = 7.6 × 10−6 andα = α(1) ∼= 0.357 (dots).
Also plotted is sech(ξ/

√
2) (dashes). (B) Same data on a semi-logarithmic scale.

Remark 8. Condition(23)ensures thatξmax is in the ring region, and not in the oscillatory tail.

Remark 9. In the case of multi-ring solutions,Lemma 7applies to each peak of the rings.

Lemma 7shows that up to radial translations and dilations, all ring solutions have the same profile in the ring
region, which is given by the well-known one-dimensional sech soliton. To illustrate that, we plot inFig. 12A the
single-ring solutions of Eq.(16) with G0 = 5 × 10−4 and with G0 = 7.6 × 10−6 rescaled according to(13) and
centered around their corresponding peaks (atξmax ∼= 10.98 andξmax ∼= 15.54, respectively), together with a plot
of sech(ξ/

√
2). As predicted byLemma 7, there is an almost perfect match between the two single-ringG-profiles

and the sech profile. More precisely, the match is excellent near the peak (|ξ − ξmax| ≤ 3); for 3 ≤ ξ − ξmax ≤ 10
theG-profile lies slightly above the sech profile (seeFig. 12B). Based onLemma 7and the results shown inFig.
12we can say that, in a sense, theG-profile is after all universal.

4.3. Self-similar ring collapse—explicit solutions

We can construct explicit self-similar ring blowup solutions by substitutingL = α
√
Tc − t in the asymptotic

profileψG (14):

Lemma 10. Let

ψ
(ex)
G = 1

α
√
Tc − t

G

(
r

α
√
Tc − t

)
e−i((log(Tc−t))/α2)−i(r2/8(Tc−t)), (26)

where G(ξ;α) is a solution of (16). Then, ψG is an explicit blowup solution of the NLS whose blowup rate is
L(t) = α

√
Tc − t.

Proof. A straightforward substitution ofψG (26) into the NLS(1) proves the result. �

Remark 11. Lemma 10applies to any solution of(16), and not just ton-ring G-profiles whereα = α(n).

Lemma 5implies thatG (and henceψG) have infiniteL2 norms. Therefore,Lemma 10proves the existence of
collapsing self-similar ring solutions of the NLS that blowup at a square root blowup rate which are not inH1.
Existence ofH1 ring type blowup solutions is discussed in Section8.
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5. NLS simulations of collapsing ring solutions

5.1. Explicit single-ring blowup solution

In order to reproduce numerically the explicit single-ring blowup solutionψ
(ex)
G , we first derive a simpler form

of (26). To do that, let

ψ̃
(ex)
G = ei((log(Tc−α2Tct)/α2)/α2)λψG(λ2t, λr), λ = α

√
Tc.

Dropping the tilde, we obtain that

ψ
(ex)
G (t, r) = 1√

1 − α2t
G

(
r√

1 − α2t

)
e−i(α2r2/8(1−a2t)), (27)

is an explicit blowup solution of the NLS with a square root blowup rate that blows up atTc = 1/α2. Settingt = 0
in (27)we obtain the corresponding initial condition

ψ0
G = G(r) e−i(α2/8)r2. (28)

We solve the NLS(10)with the initial conditionψ0
G from(28), withG0 = 7.6 × 10−6 andα = α(1)(G0) ∼= 0.357.

The corresponding NLS analytical solution is, of course, given byψG of (27). Fig. 13A shows that, as expected, the
numerical solution collapses with a ring profile. Since the normalized solution remains unchanged while focusing
by a factor of 1015 (Fig. 13B), the solution indeed undergoes self-similar collapse. Moreover,Fig. 14shows that
the blowup rate of the solution is a square root. The graph ofLLt is much smoother than inFig. 6A, since in the
case ofψG,L(t) ≡ α

√
Tc − t.

The purpose of this simulation was not to find the solution (which is known analytically), but rather to serve
as a benchmark for other simulations. In addition, the fact that the solution maintained a self-similar profile while
focusing over 15 orders of magnitude suggests that the self-similarG-profile is stable, as will be further shown in
Section6.1.1.

Fig. 13. (A) Solution of the NLS(10) with initial conditionψ0
G

at t = 2.103 (dashes),t = 5.629 (solid) andt = 7.376 (dash-dots). (B) The
three lines from A (at focusing levelsA(t) = 1.17,1.89,4.2) normalized according to(13). Also plotted is the solution at focusing levels of
A(t) = 2.22× 108 (dots) andA(t) = 3.48× 1015 (dash-dots). All five lines are indistinguishable.
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Fig. 14. Blowup rate of the solution of the NLS(10)with ψ0 = ψ0
G

.

5.2. Matching NLS ring solutions with the G-profile

In Figs. 2–4we showed NLS solutions with high-power super-Gaussian initial conditions that collapsed with
a self-similar ring profile.Fig. 15A–C shows that these self-similar profiles have an almost perfect match with
the single ringG-profiles that have the same radii (seeAppendix Dfor numerical details on how to match with a
G-profile).

Fig. 15. Solutions of NLS(10)(dashes) and the best fittedG-profile (solid) normalized according to(13). (A) ψ0 = 15 e−r4, normalized profile
of ψ atA(t) = 6.5 × 1015, G-profile withG0 = 0.000288 andα = α(1)(G0) ∼= 0.413; the two lines are indistinguishable. (B) Same as A with

ψ0 = 20 e−r4, A(t) = 1.75× 105,G0 = 7.6 × 10−6 andα = α(1)(G0) ∼= 0.357. (C) Same as A withψ0 = 15 e−r8, A(t) = 2.67× 104,G0 =
0.00038053 andα = α(1)(G0) ∼= 0.419. (D–F) Same data as on top, but on a semi-logarithmic scale.
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Fig. 16. (A) Self-similar ring profiles ofFig. 15: ψ0 = 15 e−r4 (solid),ψ0 = 20 e−r4 (dotted) andψ0 = 15 e−r8 (dash-dotted). All three lines
are nearly indistinguishable. Dashed line is sech(ξ/

√
2). (B) Same data on a semi-logarithmic scale.

Remark 12. Under the above matching approach, the value ofα (hence of G(0)) is found by looking for aG-profile
that has the same radius as the ring solution. For example, for the super-Gaussian initial conditionψ0 = 15 e−r4,
we obtainα = α(1)(G0) ∼= 0.413. The value ofα can be independently extracted from the numerical data using
the relation limt→Tc LLt = −α2/2, see(19). For example, limt→Tc LLt

∼= 0.085 for the super-Gaussian initial

conditionψ0 = 15 e−r4, seeFig. 6A, yieldingα ∼= 0.412. The fact that we recover nearly the same value ofα using
two different methods provides an additional support for the validity of the asymptotic ansatz(14)–(16).

Plotting the data ofFig. 15A–C on a semi-logarithmic scale (Fig. 15D–F) shows that theG-profiles provide
an excellent match for the self-similar profiles around the ring, but behaves very differently whenξ = O(1) and
whenξ � 1/α2. This “mismatch” is expected, since the NLS solutions themselves maintain a self-similar profile
only around the ring (seeFig. 2B).

When the three ring profiles fromFig. 15are plotted as a function of the radial distance from their corresponding
peaks (seeFig. 16), we observe that all three ring profiles are almost indistinguishable. This “universality” was
predicted byLemma 7which states that all (normalized) ring profiles behave like sech(ξ/

√
2). Indeed, the graph of

sech(ξ/
√

2) agrees very well with these three profiles. The agreement is excellent near the peak (|ξ − ξmax| ≤ 3);
for 3 ≤ ξ − ξmax ≤ 10, the NLS ring profile lies slightly above the sech profile. Comparison ofFig. 16B with
Fig. 12B thus shows that theG-profile does not only “capture” the agreement of the NLS ring solutions with the
universal sech profile near the peak, but also the small positive difference from the sech profile for 3≤ ξ − ξmax ≤
10.

5.3. “Low power” initial conditions

In Section2 we saw that solutions of the NLS(10) with high-power (N(0) = O(50Nc)) super-Gaussian initial
condition collapsed with a self-similar ring profile. On the other end, Merle and Raphael[16–18]proved that there
exists an universal constantα∗, such that all singular solutions of the NLS(1) whose power is less thanNc + α∗
collapse with theψR profile. While the studies[16–18]do not provide the value ofα∗, a simple bound forα∗ can
be obtained by calculating the power of the first excited state explicit solutionψex

R(1), see Eq.(6), which clearly does

not blowup with theψR profile. Since,‖ψex
R(1)‖2

2 = ‖R(1)‖2
2

∼= 6.6Nc, we obtain the boundα∗ ≤ 5.6Nc. Therefore,
since the rings that we observe are at powers that are ofO(50Nc), there is no contradiction between our observations
and the results of Merle and Raphael.

The results of Merle and Raphael imply that ring-type blowup can only occur above a certain power threshold.
We now ask what is the minimal power threshold necessary for solutions to collapse with a ring profile. In order
to answer this question, we first study a borderline case (seeFigs. 17 and 18) of the super-Gaussian initial solution
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Fig. 17. Solution of the NLS(10) with initial condition powerψ0 =
√

60Nc/π e−r4 with N(0) = 15Nc. (A) t = 0, A(t) = 1, (B)

t = 0.035, A(t) = 2, (C) t = 0.0485, A(t) = 12.4, (D) t = 0.04887767073216617, A(t) = 1.73× 107, (E) t = 0.0488776707321662, A(t) =
4.01× 109, (F)A(t) = 1.95× 1015. Dotted line in F is the rescaled Townes profileR.

ψ0 = c e−r4 with N(0) = 15Nc(c ∼= 9.44). Initially, the solution collapses with a ring-like profile that persists up
to a focusing level ofA(t) = 107 (B–D). However, at a later stage the relative magnitude of the on-axis amplitude
|ψ(t, r = 0)| becomes larger and larger until the global maximum is obtained at the origin (E), so that eventually it
collapses with a Townes profile (F).

Fig. 18. Relative magnitude at the origin, as a function of the focusing levelA(t) for the simulation ofFig. 17. Annotations A–F correspond to
graphs A–F inFig. 17.



G. Fibich et al. / Physica D 211 (2005) 193–220 209

Fig. 19. Focusing levelA(t), at time of transition from a ring profile to a Townes profile. The initial conditions areψ0 = c e−r4.

In order to study the dependence of the transition from a ring to Townes profile on the input power, we need
to define the “transition time”. A possible definition for the “transition time” of the solution from a ring profile to
Townes profile is the time when the solution attains its maximum at the origin for the first time sincer �= 0, i.e.,

ttransition= inf
t>0

{ |ψ(t,0)|
maxr |ψ(t, r)| = 1

}
. (29)

For example, for the simulation ofFig. 17, the transition occurs at annotation E inFig. 18. For N(0)< 10Nc
the transition occurs during the early stages of the collapse, i.e., forA(ttransition) = O(1) (seeFig. 19). However,
whenN(0)> 10Nc, the focusing level of the solution at the transition point grows at a super-exponential rate as
a function of initial power, and reachesA(ttransition) = 1016 whenN(0) = 17Nc. Since our numerical code may
become unreliable at focusing levels above 1016, we cannot determine numerically whether such a transition will
occur at much higher powers.8

6. Stability of ring profiles

6.1. Radially-symmetric case

We now test the stability of collapsing self-similar ring solutions of the radially-symmetric NLS(10). Clearly,
in this case, all perturbations preserve the radial symmetry.

6.1.1. Stability of ring profiles
In Fig. 13we solved the NLS(10) with initial conditionψ0

G, whose analytical solution is given byψG. The
fact that in the simulation the solution remained self-similar while focusing by a factor of 1015 suggests that the
self-similar ring profileψG is stable despite the presence of numerical noise. To further test the stability ofψG, we
randomly perturbed the initial ring profile fromFig. 13as follows,

ψnoise
0 = (1 + ε1(r))ψ0

G + ε2(r), (30)

whereε1(r) andε2(r) are uniformly distributed in [−0.25,0.25] and in [−0.05,0.05], respectively. Note that for
this initial condition both the ring and the inner and outer regions are perturbed (seeFig. 20A). After focusing by
less than 2, the noise in ring region (i.e., the area of high nonlinearity) has disappeared (Fig. 20B). Then, the noise at

8 See also discussion in Section9.
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Fig. 20. Solution of the NLS(10)with the noisy initial condition(30); solid line. Dotted line is theG-profile withG0 = 3.5 × 10−6.

the inner and outer regions slowly decreases, until after focusing by a factor of 150, the solution approaches a clean
ring profile. We, therefore, conclude that the self-similarψG profile is a strong attractor in the radially-symmetric
case.

Notice that in the absence of noise, the radius of the initialG-profile isξmax = 18.99 (seeFig. 13B). However,
when noise is added, the solution approaches a differentG-profile with a larger radius (ξmax = 20.05). The reason
for the increase in the radius is that the noise that was added toψ0

G increased the initial power fromN(ψ0
G) ≈ 29Nc

toN(ψnoise
0 ) ≈ 31Nc.

6.1.2. Stability of multi-ring profiles
We now test the stability of the collapsing self-similar solutionsψG, in whichG is a multi-ring profile. To do that, in

Figs. 21 and 22we solve the NLS(10)with the initial conditionψ0
G of (28), whereG is the solution of Eq.(16)with

the parametersG0 = 0.00005 andα = α(2)(G0) ∼= 0.37 (double-ring profile) andα = α(3)(G0) ∼= 0.335 (triple-
ring profile). In both cases, initially the numerical solution remains close to the analytical solutionψG, i.e., all the

Fig. 21. Dynamics of double-ring solution (solid). Dotted line in D is the best-fitting single ring profileψG; the two lines are indistinguishable.
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Fig. 22. Dynamics of triple-ring solution (solid). Dotted line in D is the best-fitting single ring profile; the two lines are indistinguishable.

rings collapse towards the center at the same rate. However, after focusing by a factor of 5, the outer ring(s) begin to
diffract, i.e., become wider and less focused. Hence, the outer ring(s) move away from the inner ring that continues
to collapse. We note that in the simulation ofFigs. 21 and 22we use the same numerical parameters (grid resolution,
etc.) as in the benchmark simulation inFig. 13which maintained the self-similar profile after focusing by a factor
of 1015. Therefore, we conclude that multi-ring solutions are unstable.

Inspection of the collapsing inner ring shows that it approaches a single ring profile (Figs. 21D and 22D). This
shows that the single-ring profileψG is an attractor not only for initial conditions of the formψ0 = c e−r2n and even
not only for monotonically decreasing initial conditions.

6.2. Anisotropic case

We now present numerical simulations of collapsing ring solutions of the NLS(1). Solving(1) numerically is
much more demanding than solving(10)and was done using the iterative grid redistribution (IGR) (seeAppendix F).
We use these simulations to study the effect of breakup of radial-symmetry on collapsing ring solutions. In order
to be able to conduct grid convergence testing, we use a deterministic breakup of radial-symmetry (elliptic initial
conditions) rather than “count” on symmetry breaking due to numerical noise.

6.2.1. Explicit single-ring initial conditions
Our simulations in Section6.1.1show that the collapsing self-similar single ring profile is stable in the radially

symmetric case. We now test the stability of ring solutions in the anisotropic case, in which symmetry breaking is
due to the introduction of small ellipticity in the initial condition. Ideally, we would like to solve the NLS(1) with
the elliptic ring initial condition

ψ0(x, y) = ψ0
G

(
r =

√
x2 + (1 + ε)y2

)
.

However, even with the iterative grid redistribution method (seeAppendix F), this simulation seems to be too
demanding at present. Therefore, we first solve the radially-symmetric NLS(10)with the ring initial conditionψ0

G
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Fig. 23. Solution of the NLS(1) with the slightly elliptic single ring profile(31). Top: Surface plot. Bottom: Level sets of|ψ|.

(28) up to t = t0 = 7.8185, such thatA(t0) = 1000. Then, we add small ellipticity (ε = 0.01) to the solution att0
and use it as an initial condition for the simulation of the NLS(1). In other words, we solve the NLS(1) with the
initial condition

ψ(t0, x, y) = ψG

(
t0, r =

√
x2 + 1.01y2

)
. (31)

As Fig. 23shows, the ring breaks into eight filaments located along a circler = rfil . These eight filaments consist
of a pair of identical filaments located at (±rfil ,0), another pair of identical filaments located at (0,±rfil ) and a
quadruple of identical filaments located at (±xfil ,±yfil ) such thatx2

fil + y2
fil = r2fil .

9 Therefore, the collapsing ring
profile is unstable as a solution of the NLS(1), i.e., with respect to perturbations that breakup the radial symmetry.

6.2.2. Elliptic super-Gaussian initial conditions
In the radially-symmetric case, we saw that high-power super-Gaussian initial conditions collapse with a single

ring self-similar profile (Figs. 2–4). To check the stability of such solutions under symmetry-breaking perturbations,
we solve the NLS(1) with the elliptic super-Gaussian initial condition,

ψ0(x, y) = 10 e−(x2+1.01y2)2,

9 As was pointed out in[25], since the NLS(1) is isotropic, the symmetry breaking induced by ellipticity preserves the symmetriesx → −x
andy → −y. Therefore, the filamentation pattern induced by ellipticity can only consist of single on-axis filament, pairs of identical filaments
located along the ellipse major axis at (±x,0), pairs of identical filaments located along the minor axis at (0,±y), and quadruples of filaments
located at (±x,±y).
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Fig. 24. Same asFig. 23for the initial conditionψ0 = 10 e−(x2+1.01y2)2 .

for whichN(0) = 16.82. The slightly elliptic super-Gaussian initial condition initially evolves into a ring structure.
However, after focusing by about 4, the ring breaks into four filaments located along a circler = rfil , seeFig. 24. For
comparison, in the radially-symmetric caseε = 0, this solution collapses with a ring-profile up to focusing levels
of A(t) = O(1015) (seeFig. 19). As in Fig. 23, one pair of identical filaments is located at (±rfil ,0) and another
pair of identical filaments is located at (0,±rfil ).

7. Supercritical NLS

The NLS Eq.(10)can be written in a more general form as

iψt(t, r) + ψrr + d − 1

r
ψr + |ψ|2ψ = 0, ψ(0, r) = ψ0(r). (32)

The cased > 2 is known as the supercritical NLS. Since the supercritical NLS also admits singular solutions, it
is natural to ask whether collapsing ring solutions also exist in the supercritical case. To do that, we solve the
supercritical NLS(32) with a super-Gaussian initial condition of the formψ0 = 10 e−r4. As in the critical case,
the solution collapses with a ring structure (seeFig. 25A). However, if we normalize the supercritical ring solution
according to Eq.(13), the normalized ring expands as the solution collapses (SeeFig. 25B). This shows that, unlike
the critical case, the rate at which ring amplitude increases is faster than the rate at which the ring radius shrinks. We
also observe that the expansion rate of the rescaled ring is≈L1/2. Therefore, the amount of power collapsing into
the singularity infε lim t→Tc

∫
|x|<ε |ψ|2r2dr is zero (i.e., weak collapse). In contrast, for the ring blowup solutions

of the critical NLS(1) the amount of power collapsing into the singularity is positive (strong collapse). We thus see
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Fig. 25. (A) Solution of the supercritical NLS(32) for d = 3, with ψ0 = 10 e−r4 at t = 0.38711 (solid),t = 0.03872 (dots) andt =
0.038723 (dashes). (B) Same data as in A, normalized according to Eq.(13).

that collapsing ring profiles of the supercritical NLS(32)do exist, but that they are quite different from those of the
critical NLS. A systematic study of these solutions will be presented elsewhere.

8. Do collapsing ring solutions exist in H1?

In Section4.3 we have found explicit self-similar ring solutions that blowup at a square root rate, which we
denoted byψ(ex)

G , see(26). These solutions, however, have an infinite power (L2 norm). This raises the question
whether there existH1 solution of the NLS that collapse with a ring profile at a square root rate. Our simulations
with high power super-Gaussian initial conditions (which are inH1) show that they collapse with a self-similar
ring profile at a square-root blowup rate, up to focusing levels of 1016. At higher focusing levels our numerical
code becomes unreliable. Even if we could reach somewhat higher focusing levels, it would not be possible to
determine numerically whether ring solutions of the NLS, such as the ones that we presented in this study, will
maintain a ring profile until the singularity. One could attempt to “overcome” this limitation by trying to extrapolate
the results ofFig. 19to power levels ofN = O(50Nc). Unfortunately, it is not clear whether the focusing level at
the transition to the Townes profile will be finite but exceedingly huge (e.g., 10 to the power of several hundreds
of thousands), or whether the solution would maintain a ring profile all the way until the singularity. Therefore, the
question whether there exist blowup solutions inH1 with a self-similar ring profile has to be answered using analytic
arguments.10

We have seen that the self-similar ring profile is given by theG-profile (Proposition 1), and that the power ofG is
infinite (Lemma 5). This seems to suggest that finite power (orH1) collapsing ring solutions do not exist. However,
as the simulations of Section5 show, the self-similar profileψG characterizes only the collapsing ring region and
not the whole solution,11 i.e.,

ψ(t, r) ∼



ψinner 0 ≤ r < ρ1L(t)

ψG ρ1L(t) ≤ r ≤ ρ2L(t)

ψouter ρ2L(t) < r

, (33)

with ρ2 � ρ1 � 1 andL(t) = 1/maxx,y |ψ(t, x, y)|. Thus, the assumption made inProposition 1that the solution

is self-similar for 0≤ r ≤ ∞ is valid only for non-H1 solutions, such asψ(ex)
G .12 In the case ofH1 solutions,

10 Whether the self-similar ring profile is maintained “only” for focusing over several hundreds (or thousands) orders of magnitudes or all the
way until the singularity is “only” a mathematical issue. Indeed, for any conceivable application, the validity of the NLS as a physical model
breaks down long before reaching focusing levels of 1016.
11 This partial beam collapse property also characterizes NLS solutions that blowup with theR-profile, see(8).
12 Indeed, a whole beam collapse forH1 solutions is not possible whenH(|ψ0|) �= 0 [26].



G. Fibich et al. / Physica D 211 (2005) 193–220 215

Proposition 1applies only to the ring region, since only there the solution is characterized by a self-similar profile.
The “modified” version ofProposition 1for H1 quasi self-similar solutions is as follows:

Proposition 13. Let ψ be a singular solution of the NLS (1) with an asymptotic quasi self-similar blowup profile
(33), where ψG is given by (14). Assume that (15) holds. Then,G(ξ) is the solution of

G′′(ξ) + G′

ξ
+

[
α4

16
ξ2 − 1

]
G+G3 = 0, for ρ1 ≤ ξ ≤ ρ2. (34)

Proof. The proof is exactly the same as the proof ofProposition 1, simply applied only to the bounded region
ρ1L(t) ≤ r ≤ ρ2L(t). �
Of course,Proposition 13does not prove the existence ofH1 ring solutions, since it relies on the assumption that
the solution has the quasi self-similar blowup profile(33). While our numerical results support this assumption, the
validity of the this assumption should be confirmed analytically, e.g., by calculatingψinner andψouter, and matching
them withψG.

Proposition 13shows that the behavior ofψ for ξ � ρ2 is not characterized by the ring profileG. Indeed,
since the ring solution amplitude decays at largeξ (seeLemma 5), at ξ � ρ2 the NLS reduces to the linear
Schr̈odinger equation iψt(t, x, y) +�ψ = 0. Therefore, the infinite-power “tail” of the ring profileG is “irrelevant”
to the NLS ring solutions, as can be seen inFig. 15D–F. We note that the feature of the “irrelevant infinite power
tail” also occurs in the supercritical NLS(32). Indeed,H1 blowup solutions of the super-critical NLS collapse
with an asymptotic self-similar which is known as theQ profile [12,27]. As in the case of theG profile, the
overall power ofQ betweenξ = 0 andξ = ∞ is infinite. However, the simulations and analysis in[28,29] show
that the collapse is, in fact, only quasi self-similar, with linear propagation for sufficiently largeξ. Hence, the
quasi self-similarQ profile is consistent with an overall finite power of the collapsing solution. The same feature
was also observed and analyzed by Malkin[30] in the critical case for solutions that blow up with the Townes
profile.

In summary, at present, the numerical and analytical results do not provide a conclusive answer to whether
collapsing ring solutions exist inH1. For further discussion on this issue, see Section9.

9. Final remarks

In this study, we presented NLS simulations of solutions that blowup with a quasi self-similar ring profile at a
square-root blowup rate up to focusing levels of 1016, at which point our numerical code may become unreliable.
As we noted in Section8, the question whether there exist collapsingH1 solutions that maintain a ring solution and
blowup at a square root blowup rate all the way up to singularity is still open. As we have seen, existence of such
solutions does not contradict the recent results of Merle and Raphael (see Section5.3) nor the infinite power of the
G-profile (Section8).

Several open issues, which are related to the question of existence ofH1 ring solutions, are:

• The assumption that the ring solution is quasi self-similar of the form(33) (see Section8) is strongly supported
by the numerical results, but its validity at focusing level�1016 is an open question.

• The minimal tail criteria for determining the relationα = α(1)(G0) for single ringG-profiles (see Section4) is
reasonable as an initial choice, but the correct criteria could be based on matching betweenψG andψouter.

• What is the minimal power for a ring-type collapse (see Section5.3)?

As we have noted, at present, the numerical and analytical results do not provide a conclusive answer to whether
collapsingH1 ring solutions of the critical NLS maintain a ring-profile all the way up to the singularity. It they do,
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they represent a new type of singular solutions of the critical NLS. If, however, these ring solutions will change into
R profiles at exceedingly high focusing levels (�1016), these ring solutions represent a new type of “quasi-singular”
solutions of the critical NLS. We note that this distinction between truly singular ring solutions and “quasi-singular”
ring solutions is a mathematical issue, since for any conceivable physical application, the NLS model is not valid
at focusing levels which are�1016.

Finally, we note that ring-type collapse was recently observed in experiments with high-power, flattened-top
laser beams[31]. These experiments were preliminary and considered only the early stages of the ring creation.
Since our simulations show that as the rings collapse they become unstable with respect to symmetry-breaking
perturbations (see Section6), a more detailed experimental investigation is needed to study the issue of ring stability
at higher focusing levels.
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Appendix A. Calculation of the G-profile (16)

Lemma 5ensures that all solutions of Eq.(16) decay asξ → ∞. Therefore, we can solve Eq.(16) as an initial
value problem with the conditionsG(0) = G0 andG′(0) = 0 using a standard Runge-Kutte ODE solver.

Appendix B. Calculation of cG

In order to calculatecG, we first find the locations 0< ξ1 < ξ1 < ξ3 < · · · of the local maxima of|ψ|. From
Lemma 5we know that

|G(ξn)| ∼ cG

ξn
, ξn >

1

α2 . (B.1)

Therefore, we perform a linear data fit for the series of points{(ξn,1/G(ξn))} for ξn > 1/α2. The slope of the fitted
line is c−1

G .

Appendix C. Finding a(n)(G0)

GivenG0 = G(0), we want to findα(1)(G0), i.e., the value ofα for which the solution of(16)will be a ring solution
with the smallest oscillation tail possible. A direct method would be to first find a value ofα than corresponds to a
solution with a single-ring (with a non-small tail) and then minimizecG as a function ofα, wherecG is calculated
as inAppendix B. This approach demands a good initial guess forα(1)(G0) and turns out to be relatively inefficient.

A better approach is to look at the value ofG(ξ2) where{ξn} is the series defined inAppendix B. For a single-ring
solution,ξ2 already belongs to the oscillating tail, therefore we expect|G(ξ2)| to be minimal. Naively, a minimum
finding algorithm can be applied to find the optimalα which minimizes|G(ξ2)|. However, a better approach can be
derived by noting that asα changes fromα(1) − ε toα(1) + ε,G(ξ2) changes its sign (seeFig. 10and alsoFig. C.1).
We can take advantage of this property and apply a zero-finding algorithm to find the value for whichG(ξ2) is
closest to zero. This method is significantly faster than the minimum finding algorithm and in addition it does not
demand a good initial guess forα(1)(G0). Clearly, sinceLemma 5ensures thatcG can not be zero,G(ξ2) cannot
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Fig. C.1.G(ξ2) as a function ofα− α(1)(G0) for G0 = 0.0003.

Fig. C.2. Zoom-in onFig. C.1nearα = α(1)(G0).

be zero as well. Indeed, zooming in on the neighborhood ofα(1)(G0) shows a discontinuity atα = α(1) (Fig. C.2).
The discontinuity in the graph asserts that the zero finding algorithm will be stopped by an external threshold and
not when finding a true optimal value. This does not constitute a problem, however, because asFig. C.2shows, the
zero search will terminate at a value ofα which isO(10−6) close toα(1)(G0).

Extension of the method ton-ring solutions is done searching for the values ofα = α(n)(G0) for whichG(ξn+1)
is closest to zero.

Appendix D. Matching a given ring profile with a G-profile

When we find a self-similar ring profile of a collapsing NLS solution, we would like to find the corresponding
best fitting single-ring solution of(16). To do that, we first require that the two profiles will have the same amplitude
by normalizingψ and theG-profile according to(13). Fig. D.1shows that the radius of the normalizedG-profiles
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Fig. D.1. Radius of a normalized single-ringG-profile as a function ofG0.

increases monotonically asG0 decreases (as, of course, can be expected). Therefore, the match is done by searching
for the value ofG0 for which the normalizedG andψ and have the same radius.

Appendix E. Simulation of radially-symmetric NLS (dynamic rescaling)

Simulations of the radially-symmetric NLS(10)were performed using the method of dynamic rescaling[9] with
approximate boundary conditions[32]. In this method, the independent variables and the function are dynamically
rescaled in a way which is based on the asymptotic form of the solution(14). As a result, in the rescaled variables,
the function is smooth and the problem can be solved on a fixed grid using standard techniques. Finally, the NLS
solution is recovered from that of the rescaled problem. Additional rescaling is applied to the modulation variables
L andτ, so that they match the corresponding variables of the asymptotic theory[1,33].

Appendix F. Simulation of anisotropic NLS (iterative grid redistribution)

We use the iterative grid redistribution method for the simulations of the NLS with anisotropic initial conditions.
The IGR method was introduced in[34] and further improved in[35] and[36]. The method consists of the following
three parts:

(1) A grid generation rule that determines the mesh mappingx = T (ξ).
(2) An iterative procedure that controls the grid distribution near the singular points.
(3) A procedure for solving the NLS.

Step (2) is the key for the method to be successful for the problem with singular behavior. It is a procedure that
improves the grid distribution near singular region if the mappingT in step (1) cannot achieve enough resolution
in the singular region. In step (1), the grid generation in two and three spatial dimensions is commonly done using
the variational approach, specifically by minimizing a functional of the coordinate mapping between the physical
domain and the computational domain. The functional is chosen so that the minimum is suitably influenced by the
desired properties of the solution of the PDE itself. Steps (1) and (2) are then incorporated into a static adaptive
method for solving the NLS equation in the computational domain. The grid re-generation is needed when certain
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smoothness criterion for the solution in the computational domain is violated. The advantage of the method is that
it can handle singularities with complicated structures. For details, we refer the reader to[35,34,36].
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